[1] 周启星,黄国宏.2001.环境生物地球化学及全球环境变化[M].北京:科学出版社. [2] 孙铁珩,周启星,李培军.2001.污染生态学[M].北京:科学出版社. [3] 钟鸣,周启星.2002.微生物分子生态学技术及其在环境污染研究中的应用[J].应用生态学报,13(2):247~251. [4] 须藤隆一(日).1988.水环境净化及废水处理微生物学[M].北京:中国建筑工业出版社. [5] Amann, Lemmer RH, Wagner M. 1998. Monitoring the community structure of wastewater treatment plants: a comparison of old and new techniques[J]. FEMS Microbiol. Ecol., 25: 205~215. [6] Cangelosi GA, Brabant WH. 1997. Depletion of pre-16S rRNA in starved Escherichia coli cells [J]. J. Bacteriol., 179: 4457~4463. [7] Cart E, Eason H, Feng S, et al. 2000. RAPD-PCR typing of Acinetobacter isolates from activated sludge systems designed to remove phosphorus microbiologically [J]. J. Appl. Microbiol.,90(3) :309~319. [8] Cech JS, Hartman P. 1990. Glucose induced break down of enhanced biological phosphate removal[J]. Environ. Technol., 11:651~656. [9] Cech JS, Hartman P. 1993. Competition between polyphosphate and polysaccharide accumulating bacteria in enhanced biological phosphate removal systems[J]. Water. Res., 27:1219~1225. [10] Daniel B, Oerther, Jakob P, et al. 2000. Monitoring precursor 16SrRNAs of Acinetobacter spp. in activated sludge wastewater treatment systems [J]. Appl. Environ. Microbiol., 66: 2154~2165. [11] Dionisi HM, Layton AC, Harms G, et al. 2002. Quantification of Nitrosomonas oligotropha-like ammonia-oxidizing bacteria and Nitrospira spp. from full-scale wastewater treatment plants by competitive PCR [J]. Appl. Environ. Microbiol., 68: 245~253. [12] Henriksen SD. 1976. Moraxella, Neisseria, Branhamella, and Acinetobacter[J]. Annu. Rev. Microbiol., 30: 63~83. [13] Holgerm D, Niels BR, Karl HS, et al. 2001. Cultivation-independent, semiautomatic determination of absolute bacterial cell numbers in environmental samples by fluorescence in situ hybridization[J]. Appl. Environ. Microbiol., 67: 5810~5818. [14] Howarth R, Unz RF, Seviour EM, et al. 1999. Phylogenetic relationships of filamentous sulfur bacteria (Thiothrix spp. and Eikelboom type 021N bacteria) isolated from wastewater-treatment plants and description of Thiothrix eikelboomii sp. nov.,Thiothrix unzii sp. nov., Thiothrix fructosivorans sp. nov. and Thiothrix defluvii sp. nov [J]. Int. J. Syst. Bacteriol., 49:1817~1827. [15] Juretschko S, Timmermann G, Schmid M, et al. 1998. Combined molecular and conventional analyses of nitrifying bacterium diversity in activated sludge: nitrosococcus mobilis and nitrospira-like bacteria as dominant populations [J]. Appl. Environ. Microbiol., 64:3042~3051. [16] Kohne DE. 1984. Method for detecting, identifying, and quantitating organisms and viruses[P]. European Patent, :0531798. [17] Manz W, Wagner M, Amann R, et al. 1994. In situ characterization of the microbial consortia active in two wastewater treatment plants[J]. Water Res., 28:1715~1723. [18] Maszenan AM, Seviour R J, Patel BKC, et al. 1998. The hunt for the G-bacteria in activated sludge biomass[J]. Water Sci. Technol., 37: 65~69. [19] Mino T, van Loosdrecht MCM, Heijene JJ. 1998. Microbiology and biochemistry of the enhanced biological phosphorus removal process[J]. Water Res., 32: 3193~3207. [20] Nielsen PH, de Muro MA, Nielsen JL. 2000. Studies on the in situ physiology of Thiothrix spp. present in activated sludge[J].Environ. Microbiol . , 2(4) :389~398. [21] Nole SC, Ward DM. 1996. Photosynthate partitioning and fermentation in hot spring microbial mat communities[J]. Appl.Environ. Microbiol., 62: 4598~4607. [22] Oerther DB, de los Reyes FL, Raskin L. 1999. Interfacing phylogenetic oligonucleotide probe hybridizations with representations of microbial populations and specific growth rates in mathematical models of activated sludge processes[J]. Water Sci. Technol.,39:11~20. [23] Raskin L, Rittmann B, Stahl DA. 1996. Competition and coexistence of sulfate-reducing and methanogenic populations in anaerobic biofilms[J]. Appl. Environ. Microbiol., 62: 3847~3857. [24] Selvaratnam S, Barbara AS, Beverly LM, et al. 1995. Application of reverse transcriptase PCR for monitoring expression of the catabolic dmpN gene in a phenol-degrading sequencing batch reactor[J]. Appl . Environ. Microbiol . , 61:3981~3985. [25] Snaidr J, Amann R, Huber I, et al. 1997. Phylogenetic analysis and in situ identification of bacteria in activated sludge[J]. Appl. Environ. Microbiol., 63: 2884~2896. [26] Takahiro K, Yoichi K, Shinobu A, et al. 2000. Phylogenetic analysis ofand oligonucleotide probe development for Eikelboom type 021N filamentous bacteria isolated from bulking activated sludge[J]. Appl.Environ. Microbiol., 66: 5043~5052. [27] Vigdis T, Jostein G, Fride LD. 1990. High diversity in DNA of soil bacteria[J]. Appl. Environ. Microbiol., 56: 782~787. [28] Wagner M, Amann R, Lemer H, et al. 1993. Probing activated sludge with oligonucleotides specific for proteobacteria:inadequacy of culture-dependent methods for describing microbial community structure[J]. Appl. Environ. Microbiol., 59:1520~1525. [29] Wagner M, Amann R, Lemmer H, et al. 1995. In situ identification of ammonia-oxidizing bacteria[J]. Syst. Appl. Microbiol.,18: 251~264. [30] Wagner M, Erhart R, Manz W, et al. 1994. Development of an rRNA-targeted oligonucleotide probe specific for the genus Acinetobacter and its application for in situ monitoring in activated sludge[J]. Appl. Environ. Microbiol., 60: 792~800. [31] Wiedmann-al-ahmad M, Tichy HV, Schon G. 1994. Characterization of Acinetobacter type strains and isolates obtained from wastewater treatment plants by PCR fingerprinting [J]. Appl.Environ. Microbiol., 60: 4066~4071. |