欢迎访问《生态学杂志》官方网站,今天是 分享到:

生态学杂志 ›› 2024, Vol. 43 ›› Issue (4): 1000-1007.doi: 10.13292/j.1000-4890.202404.033

• 研究报告 • 上一篇    下一篇

岩性对森林土壤有机碳矿化的影响

付瑞桐1,李德军2,3,胡培雷2,3,段鹏鹏2.3*,张玉玲1*   

  1. 1沈阳农业大学土地与环境学院, 沈阳 110866; 2中国科学院亚热带农业生态研究所亚热带农业生态过程重点实验室, 长沙 410125; 3广西自治区重点实验室, 中国科学院环江喀斯特生态系统观测研究站, 广西环江 547100)

  • 出版日期:2024-04-10 发布日期:2024-04-08

Effects of lithology on soil organic carbon mineralization in forests.

FU Ruitong1, LI Dejun2,3, HU Peilei2,3, DUAN Pengpeng2,3*, ZHANG Yuling1*   

  1. (1College of Land and Environment, Shenyang Agricultural University, Shenyang 110866, China; 2Key Laboratory of Subtropical Agriculture Ecology, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China; 3Guangxi Key laboratory of Karst Ecological Processes and Services, Huanjiang Observation and Research Station for Karst Ecosystems, Chinese Academy of Sciences, Huanjiang 547100, Guangxi, China).

  • Online:2024-04-10 Published:2024-04-08

摘要: 土壤有机碳(SOC)矿化速率影响大气中二氧化碳(CO2)浓度,进而影响全球气候变化。然而,岩性如何影响SOC矿化尚不明确。本研究以喀斯特地区的石灰岩和非喀斯特地区的碎屑岩发育的土壤为对象,利用荧光分析法和磷脂脂肪酸(PLFA)法测定土壤微生物活性和微生物量以及群落组成,采用铁、铝氧化物和交换性钙镁含量来评估矿物保护特征,结合室内培养探究岩性对SOC矿化的影响因素。结果表明,碎屑岩和石灰岩发育土壤的SOC矿化量有显著差异,培养结束时(第42天),碎屑岩发育土壤的累积矿化量比石灰岩发育土壤高38.5%。方差分解分析表明,土壤化学性质、微生物和矿物保护特性对两种岩性发育土壤的SOC矿化量的共同解释度为47.1%。结构方程模型结果进一步表明,岩性可以通过调控土壤矿物保护特性或土壤化学性质影响土壤SOC的矿化,也可以通过调控土壤化学性质进而影响微生物性质来影响SOC矿化,岩性还可以直接影响SOC的矿化。上述结果表明,为了预测土壤碳的动态变化,并尽量减少全球变化下的碳排放,应考虑土壤SOC矿化的岩性驱动因素。


关键词: 岩性, SOC矿化, 磷脂脂肪酸, 土壤酶活性, 矿物保护

Abstract: The rate of soil organic carbon (SOC) mineralization affects carbon dioxide (CO2) concentration in the atmosphere, with consequences on global climate change. However, the effects of lithology on SOC mineralization remain undefined. A laboratory experiment was conducted to explore the lithology effects on SOC mineralization of soils that were developed from limestone in karstic areas and clastic rocks in non-karstic areas. Soil microbial activity, microbial biomass and community composition were determined by fluorescence analysis and phospholipid fatty acid (PLFA) method, respectively. Mineral factors, such as iron, aluminum oxides, and exchangeable calcium and magnesium contents, were used to estimate mineral conservation characteristics. There were significant differences in SOC mineralization between two soil types, as evidenced by a 38.5% higher cumulative mineralization of clastic rocks developed soils than that of limestone developed soils at the end of incubation (day 42). Soil physicochemical properties, microbial and mineral protective properties jointly explained 47.1% variations of SOC mineralization based on the variation partitioning analysis. The results of structural equation modeling further showed that lithology not only directly influenced SOC mineralization, but also indirectly influenced it by regulating soil mineral protection properties or soil chemical properties, or by regulating soil chemical properties and microbial properties. To predict soil carbon dynamics and minimize carbon emissions under global change, the importance of the lithological effects on SOC mineralization should be considered.


Key words: lithology, SOC mineralization, phospholipid fatty acid, soil enzymatic activity, mineral protection