欢迎访问《生态学杂志》官方网站,今天是 分享到:

生态学杂志 ›› 2025, Vol. 44 ›› Issue (9): 2837-2845.doi: 10.13292/j.1000-4890.202509.026

• 研究报告 • 上一篇    下一篇

全球常绿阔叶林净初级生产力和降水利用效率的空间格局与驱动机制

李小珍1,胡颖1,韦钰1,廖家培1,付瑞玉1,徐胜2,张子嘉3,胡中民1,杨岳1*
  

  1. (1海南保亭热带雨林生态系统观测研究站, 海南大学生态学院, 海口 570228;  2中国科学院沈阳应用生态研究所, 沈阳 110016;  3海南省生态环境监测中心, 海口 571126)
  • 出版日期:2025-09-10 发布日期:2025-09-03

Spatial patterns and driving mechanisms of net primary productivity and precipitation use efficiency in global evergreen broadleaved forests.

LI Xiaozhen1, HU Ying1, WEI Yu1, LIAO Jiapei1, FU Ruiyu1, XU Sheng2, ZAHNG Zijia3, HU Zhongmin1, YANG Yue1*   

  1. (1Hainan Baoting Tropical Rainforest Ecosystem Observation and Research Station, School of Ecology, Hainan University, Haikou 570228, China;  2 Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, China; 3Hainan Provincial Ecological Environment Monitoring Center, Haikou 571126, China).

  • Online:2025-09-10 Published:2025-09-03

摘要: 常绿阔叶林在维持生物多样性和生态系统功能方面发挥着关键作用,同时对气候变化和人类活动的影响高度敏感。然而,全球常绿阔叶林的净初级生产力(net primary productivity, NPP)和降水利用效率(precipitation use efficiency, PUE)的空间分布格局及其驱动机制仍不明确。为此,本研究基于全球272个常绿阔叶林实测NPP数据,使用随机森林模型预测了全球常绿阔叶林NPP和PUE的空间分布格局,并从气候和土壤物理性质分析NPP和PUE的驱动机制。结果表明:全球NPP预测值为909.08~3213.11 g C·m-2·a-1,PUE预测值为0.22~5.79 g C·m-2·mm-1;NPP和PUE在全球范围内展现出相似的地理空间分布趋势,在海拔低于400 m的区域,两者均呈上升趋势,而在海拔超过400 m后则出现下降;温度和降水是NPP、PUE变化的主要驱动因素,而土壤物理性质对其影响较小;NPP在降水量为1200 mm时与降水的关系发生变化,温度在19 ℃以下时降水对NPP的影响更显著;PUE对温度和降水的响应也存在阈值效应,降水<2500 mm或温度<24 ℃时PUE较高。降水和温度对NPP和PUE的协同作用受到两因素相互叠加的影响。研究结果为全球常绿阔叶林碳水循环模型提供了关键参数,有助于提升其在气候变化情景下的空间预测能力。


关键词: 常绿阔叶林, 环境因子, 净初级生产力, 降水利用效率, 随机森林

Abstract: Evergreen broadleaved forests (EBFs) play a crucial role in maintaining biodiversity and ecosystem functions, which are highly sensitive to climate change and human activities. However, global spatial distributions and the underlying mechanisms of net primary productivity (NPP) and precipitation use efficiency (PUE) in EBFs remain poorly understood. Here, we integrated measured NPP data from 272 EBFs sites worldwide with a random forest model to predict global NPP and PUE patterns and to evaluate climatic and edaphic drivers. The results showed that the predicted global NPP values ranged from 909.08 to 3213.11 g C·m-2·a-1, while PUE varied from 0.22 to 5.79 g C m-2·mm-1. NPP and PUE exhibited similar global distribution patterns, both increasing at forests below an elevation of 400 m and then declining above this threshold. Temperature and precipitation were the principal determinants of NPP and PUE variations, whereas soil physical properties played a relatively minor role. We identified the threshold effects in these relationships, including a shift in the NPPprecipitation relationship at 1200 mm, with precipitation exerting a stronger influence on NPP at temperatures below 19 ℃. PUE displayed threshold responses to temperature and precipitation, with higher values being observed at precipitations below 2500 mm or temperatures below 24 ℃. The combined effects of precipitation and temperature on both NPP and PUE depend on their interactive influence rather than the isolated effects. These findings provide critical parameters for carbon-water cycle models in EBFs and enhance the predictive capabilities under future climate change scenarios.


Key words: evergreen broadleaved forest, environmental factor, net primary productivity, precipitation use efficiency, random forest