欢迎访问《生态学杂志》官方网站,今天是 分享到:

生态学杂志 ›› 2025, Vol. 44 ›› Issue (8): 2779-2789.doi: 10.13292/j.1000-4890.202508.036

• 综合评述 • 上一篇    下一篇

沉积物-水界面生物扰动对湿地甲烷排放影响研究进展

陈大屡1,赵璐峰1,唐建军1,胡亮亮1,2*,陈欣1
  

  1. 1浙江大学生命科学学院, 杭州 310058; 2上海海洋大学水产与生命学院, 上海 201306)
  • 出版日期:2025-08-10 发布日期:2025-08-15

Research advances in the effects of bioturbation at sediment-water interface on methane emissions from wetlands.

CHEN Dalü1, ZHAO Lufeng1, TANG Jianjun1, HU Liangliang1,2*, CHEN Xin1   

  1. (1College of Life Sciences, Zhejiang University, Hangzhou 310058, China; 2College of Fisheries and Life Science, Shanghai Ocean University, Shanghai 201306, China).

  • Online:2025-08-10 Published:2025-08-15

摘要: 沉积物-水界面是湿地生态系统物质循环的重要环节,其中生物扰动对水体和沉积物之间甲烷产生、氧化和运输有着复杂的影响,成为近些年研究的热点。本文系统回顾了扰动生物类型及其扰动特征,并综述了沉积物水界面的生物扰动如何影响湿地甲烷排放的研究现状,以期为湿地生态系统碳汇功能的深入研究及科学管理提供参考。目前大部分研究表明,生物扰动增加湿地甲烷排放,但不同扰动生物类型的影响程度不同。生物扰动可以通过改变沉积物有机碳分布、营养盐通量及氧化还原电位条件而影响产甲烷和甲烷氧化的微生物过程,还可以直接改变沉积物结构与孔隙度从而促进甲烷的冒泡运输。此外,扰动生物也可以通过沉积物-水界面的植被和水生生物食物链间接地影响甲烷排放。今后还应从以下几个方面加强研究:(1)多时空尺度;(2)关注扰动生物与其他生物的相互作用;(3)多学科技术融合;(4)关注气候变化下扰动生物的响应;(5)促进应用研究的发展。


关键词: 甲烷, 沉积物, 生物扰动, 湿地, 冒泡, 甲烷氧化

Abstract: The interface between sediment and water plays a crucial role in matter cycling of wetlands. Bioturbation has multifaceted impacts on methane generation and oxidation as well as its transport between water column and sediments, making it a hot research topic in recent years. We conducted a comprehensive review on animal bioturbators, their disturbance characteristics, and the impact of bioturbation at the sediment-water interface on methane emissions of wetlands. The aim of this review was to provide a valuable reference for further investigation into the carbon sink function of wetlands and their effective management. Most research has demonstrated that bioturbation enhances methane emissions of wetlands, with the extent of such impact varying among different bioturbator species. Bioturbation can modify the microbial processes that produce and oxidize methane by altering the distribution of organic carbon in sediments, nutrient fluxes, and redox potential conditions. Bioturbation can directly modify sediment structure and porosity, which would facilitate methane transport through bubbling. Furthermore, bioturbators can indirectly impact methane emissions by altering vegetation and aquatic food chains at the sediment-water interface. This review underscores the necessity for strengthening future research in the following areas: (1) taking into account multiple temporal and spatial scales; (2) investigating the interactions between bioturbators and other organisms; (3) integrating various disciplines and technologies; (4) assessing the response of bioturbators to climate change; and (5) fostering applied research.


Key words: methane, sediment, bioturbation, wetland, ebullition, methane oxidation