欢迎访问《生态学杂志》官方网站,今天是 分享到:

生态学杂志 ›› 2025, Vol. 44 ›› Issue (8): 2706-2716.doi: 10.13292/j.1000-4890.202508.011

• 研究报告 • 上一篇    下一篇

2000—2020年黄河三角洲自然保护区湿地动态变化

唐影,范晓梅*,王林林,杨清   

  1. (南京信息工程大学地理科学学院, 南京 210044)
  • 出版日期:2025-08-10 发布日期:2025-08-14

Wetland dynamics in the Yellow River Delta Nature Reserve during 2000-2020.

TANG Ying, FAN Xiaomei*, WANG Linlin, YANG Qing   

  1. (College of Geographical Sciences, Nanjing University of Information Science & Technology, Nanjing 210044, China).
  • Online:2025-08-10 Published:2025-08-14

摘要: 黄河三角洲自然保护区作为国家级湿地自然保护区,对该地湿地资源的监测是生态修复及实现联合国可持续发展目标(SDG)的关键。本研究采用简单非迭代聚类(simple non-iterative clustering,SNIC)分割算法集成随机森林分类器(RF),即SNIC-RF,以5年为间隔提取自然保护区2000—2020年湿地信息,并利用重心模型、转移矩阵来探究湿地时空动态变化及内部之间的相互转化。结果表明:(1)基于SNIC-RF的湿地分类总体精度均大于0.89,Kappa系数均大于0.87。对比仅使用RF,SNIC-RF分类结果各期总体精度提升了2.7%~14.1%,Kappa系数提升了3.5%~16.4%。在光谱信息难以区分的水库、池塘等人工湿地上精度表现优异。(2)2000—2020年间研究区湿地总面积呈波动变化,2010—2020年期间波动强度不断增强。自然湿地面积不断减小、人工湿地占比持续增加。(3)2010年前,湿地转化主要发生在自然湿地之间,人工湿地参与占比低;2010年后,转移方向以多种湿地向非湿地转化为主,稻田转入量最多。人工湿地扩张主要由非湿地及泥沙质滩涂转化而来。(4)大汶流保护区湿地重心迁移方向较一千二保护区更复杂,强度更高。两保护区人工湿地重心不断向东迁移,反映了东营市生态经济建设的发展。


关键词: 河口湿地, 黄河三角洲自然保护区, 简单非迭代聚类, 随机森林, 动态变化

Abstract: The Yellow River Delta Nature Reserve is a designated national wetland nature reserve in China. The effective monitoring of wetland resources within the reserve is of paramount importance for ecological restoration and achieving the United Nations Sustainable Development Goal (SDG). In this study, the simple non-iterative clustering (SNIC) segmentation algorithm integrated with random forest classifier (SNIC-RF) was used to extract wetland information from 2000 to 2020 at 5-year intervals. Both centroid and transfer matrices were used to explore the spatiotemporal variations and conversions among wetland types. The results showed that: (1) Wetland classification based on SNIC-RF achieved overall accuracies greater than 0.89, with Kappa coefficient exceeding 0.87. Compared with the results using only RF, the SNIC-RF method improved the overall accuracy by 2.7%-14.1% and the Kappa coefficient by 3.5%-16.4%, respectively. SNIC-RF demonstrated excellent accuracy in delineating artificial wetlands such as reservoirs and ponds, where distinguishing spectral information was challenging. (2) The wetland area fluctuated from 2000 to 2020, with an increasing trend in the intensity of fluctuations during the period from 2010 to 2020. Natural wetland areas diminished continuously, whereas the proportion of artificial wetlands steadily increased. (3) Before 2010, wetland conversions primarily occurred in natural wetlands, with minimal involvement of artificial wetlands. After 2010, the conversions predominantly shifted from various wetlands to non-wetland types, with paddy fields being the primary source. The expansion of artificial wetlands mainly originated from the conversion of non-wetlands and mudflats. (4) Wetland migration in the Dawenliu Nature Reserve was more complex and intense than that in the Yiqianer Nature Reserve. The centroids of the artificial wetlands in both regions continuously migrate eastward, reflecting the development of the ecological economy in Dongying City.


Key words: estuary wetland, Yellow River Delta Nature Reserve, simple non-iterative clustering, random forest classifier, dynamic change