欢迎访问《生态学杂志》官方网站,今天是 分享到:

生态学杂志

• 研究论文 • 上一篇    下一篇

獐子岛海域冬季分级叶绿素a的分布特征及其影响因素

吴文广1,张继红1,2*,刘毅1,王巍1   

  1. (1中国水产科学研究院黄海水产研究所, 农业部海洋渔业可持续发展重点实验室, 山东青岛 266071;2青岛海洋科学与技术国家实验室, 海洋渔业科学与食物产出过程功能实验室, 山东青岛 266200)
  • 出版日期:2018-03-10 发布日期:2018-03-10

Distribution pattern and impact factors of chlorophyll a of size-fractionated phytoplankton in winter in the sea near Zhangzidao Island.

WU Wen-guang1, ZHANG Ji-hong1, 2*, LIU Yi1, WANG Wei1   

  1. (1Key Laboratory of Sustainable Development of Marine Fisheries, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, Shandong, China; 2Function Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266200, Shandong, China).
  • Online:2018-03-10 Published:2018-03-10

摘要: 于2016年1月对獐子岛海域进行了航次调查,研究了獐子岛海域浮游植物粒级结构的空间分布特征及其环境影响因素。结果表明:冬季表层总叶绿素a、小型(>20 μm)、微型(2~20 μm)和微微型(0.45~2 μm)浮游植物叶绿素a浓度的范围分别为0.24~0.92、0.15~0.58、0.09~0.46、0~0.03 μg·L-1,平均叶绿素a的浓度分别为0.69、0.36、0.33、0.002 μg·L-1,小型、微型和微微型浮游植物对浮游植物总量的贡献率分别为51.72%、48.01%、0.26%;底层总叶绿素a、小型、微型和微微型浮游植物叶绿素a浓度的范围分别为0.29~1.77、0.12~1.45、0.17~0.50、0 μg·L-1,平均叶绿素a的浓度分别为0.78、0.43、0.34、0μg·L-1,小型、微型和微微型浮游植物对浮游植物总量的贡献率分别为52.97%、47.03%、0;从垂直分布上来看,表、底层总叶绿素a及两种粒级浮游植物(>20 μm、2~20 μm)的浓度均差异不显著,分布较为均匀;从水平分布上来看,总叶绿素a及两种粒级浮游植物(>20 μm、2~20 μm)浓度的表、底层空间分布趋势相近,均呈现出由獐子岛海域西北部向南部逐渐降低的趋势。RDA分析表明,温度、盐度、溶解氧、颗粒态有机物、NO2--N和NH4+-N是影响獐子岛海域冬季浮游植物粒级结构变动的重要因素。

关键词: 稻田, 生物炭, 土壤酶活, 土壤肥力, 秸秆还田

Abstract: We investigated the distribution of chlorophyll a of size-fractioned phytoplankton in the sea near Zhangzidao Island in January, 2016. Correlations of the concentrations of chlorophyll a and multiple environmental factors were explored to determine the main impact factors. Ourresults showed that, in the surface layer, the concentrations of chlorophyll a of total phytoplankton, microplankton, nanoplankton and picoplankton ranged 0.24-0.92, 0.15-0.58, 0.09-0.46 and0-0.03 μg·L-1, respectively, with averaged concentrations being 0.69, 0.36, 0.33 and 0.002 μg·L-1. Contributions of microplankton, nanoplankton, and picoplankton to total chlorophyll a were 51.72%, 48.01%, and 0.26%, respectively. In the bottom layer, picoplankton was not found. The concentrations of chlorophyll a of total phytoplankton, microplankton and nanoplankton in the bottom layer ranged 0.29-1.77, 0.12-1.45, 0.17-0.50 μg·L-1, respectively, with mean concentrations being 0.78, 0.43, and 0.34 μg·L-1. Contributions of chlorophyll a of microplankton and nanoplankton to total chlorophyll a were 52.97% and 47.03%, respectively. There was no significant difference in the concentrations of chlorophyll a of total phytoplankton, microplankton and nanoplankton between the surface and bottom layers (all P<0.01, pairedttest), indicating a homogeneously vertical distribution. Horizontal distributions of chlorophyll a of total phytoplankton, microplankton and nanoplankton also showed a homogenous pattern, with concentrations all gradually decreasing from the northwest to the south. Results from the redundancyanalysis showed that temperature, salinity, dissolved oxygen, particulate organic matter, NO2--N and NH4+-N were main impact factors driving the distribution of chlorophyll a of phytoplankton.

Key words: biochar, straw returning, soil fertility, paddy soil, soil enzyme activity