欢迎访问《生态学杂志》官方网站,今天是 分享到:

生态学杂志 ›› 2026, Vol. 45 ›› Issue (1): 346-352.

• 技术与方法 • 上一篇    

基于AI辅助识别的北京百花山鸟类多样性被动声学监测

高翔1,刘小龙2,张佳蕊2,李莹2,郭雨蕊1,陈筱璨1,董路1*   

  1. 1北京师范大学生命科学学院, 生物多样性与生态工程教育部重点实验室, 北京 100875; 2北京百花山国家级自然保护区, 北京 102311)

  • 出版日期:2026-01-10 发布日期:2026-01-09

Application of passive acoustic monitoring based on AI-assisted recognition in bird diversity survey in Baihuashan, Beijing.

GAO Xiang1, LIU Xiaolong2, ZHANG Jiarui2, LI Ying2, GUO Yurui1, CHEN Xiaocan1, DONG Lu1*   

  1. (1 Beijing Normal University, College of Life Sciences, Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, Beijing 100875, China; 2Beijing Baihuashan National Nature Reserve, Beijing 102311, China).

  • Online:2026-01-10 Published:2026-01-09

摘要: 为探究基于AI辅助识别的被动声学监测在鸟类多样性调查中的实际应用效果,本研究在北京百花山国家级自然保护区内的小龙门和百花山两个区域安装了14台声纹监测仪,于2023年6月至2024年6月开展了为期1年的连续监测,利用AI识别模型对录制的音频进行鸟种识别。筛选物种识别置信度阈值在50%以上的音频文件并进行人工复核,获取有效记录音频116584条,记录鸟类90种,其中包括首次在该地区记录到的小天鹅(Cygnus columbianus)和豆雁(Anser fabalis),对于雀形目和鸮形目鸟类的探测率较高。研究发现,当设置较高的置信度阈值时,虽然会一定程度减少识别的鸟类物种数,但并不会显著影响鸟类群落结构的空间差异、季节变化和活动节律等方面的结果。鸟类被动声学监测可在自然保护地的长期监测管理与科学研究中发挥重要作用,但采集、识别和分析标准仍有待规范,对于不善鸣的类群,需结合样线调查与红外相机监测等方法,构建全方位、多层次、多角度的监测体系,以对当地的鸟类多样性进行更准确的评估。


关键词: 被动声学监测, 声纹识别, 鸟类多样性, 自然保护地

Abstract: To investigate the effectiveness of AI-assisted passive acoustic monitoring in avian diversity surveys, we installed 14 acoustic monitoring devices in the Xiaolongmen and Baihua Mountain areas of Beijing Baihua Mountain National Nature Reserve. Continuous monitoring was conducted using a triggered recording mode for one year from June 2023 to June 2024. Audio files were transmitted via 4G networks and analyzed by an AI recognition model for bird species identification. Audio clips with species recognition confidence thresholds above 50% underwent manual verification, yielding 116584 valid recordings documenting 90 bird species. Notably, Tundra Swan (Cygnus columbianus) and Bean Goose (Anser fabalis) were first-time regional records. The detection capabilities for nocturnal species like nightjars and owls were stronger. Under a higher confidence threshold, it reduced the number of identified bird species to a certain extent and did not significantly affect the results regarding aspects such as the spatial differences, seasonal variations, and activity rhythms of bird communities. Passive acoustic monitoring of birds can play a crucial role in the long-term monitoring, management, and scientific research of nature reserves. However, standards for data collection, identification, and analysis should be standardized. For bird groups that are not vocal, it is necessary to integrate methods such as line transect surveys and infrared camera monitoring to build a comprehensive, multi-level, and multi-angle monitoring system, thereby enabling more accurate assessment of local bird diversity.


Key words: passive acoustic monitoring, acoustic recognition, bird diversity, nature reserve