欢迎访问《生态学杂志》官方网站,今天是 分享到:

生态学杂志 ›› 2026, Vol. 45 ›› Issue (1): 328-337.doi: 10.13292/j.1000-4890.202601.010

• 技术与方法 • 上一篇    下一篇

基于不确定性理论的区域农田生态系统健康评估:以河南省为例

张田1,2,王美娥2,杨阳2*,陈卫平2,张瑶2   

  1. 1郑州大学河南先进技术研究院, 郑州 450003; 2中国科学院生态环境研究中心城市与区域生态国家重点实验室, 北京 100085)

  • 出版日期:2026-01-10 发布日期:2026-01-09

Uncertainty-enabled regional agroecosystem health assessment: A case study of Henan Province.

ZHANG Tian1,2, WANG Mei’e2, YANG Yang2*, CHEN Weiping2, ZHANG Yao2   

  1. (1Henan Institutes of Advanced Technology, Zhengzhou University, Zhengzhou 450003, China; 2State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China).

  • Online:2026-01-10 Published:2026-01-09

摘要: 从不确定性角度评估区域农田生态系统健康状况有助于提升区域农业经济发展决策的科学性和准确性。本研究基于生态系统健康理念,从农田生态系统承载力、生产力、竞争力和系统创新力4个维度构建区域农田生态系统健康评价指标体系,结合Monte Carlo随机模拟方法,评估权重设置的不确定性对健康评估结果的影响,揭示了权重变化在10年评估中的关键作用。结果表明:2011—2020年河南省各地区粮食单产率显著增加(增幅为32.9%~56.0%),但区域间农田生态系统健康水平变化特征存在显著差异。豫中(郑州)、豫南(南阳)和豫西(洛阳)地区因耕地资源压力较大,健康水平以亚健康为主(隶属概率分别为46.3%、59.3%和67.4%);而豫东(开封)和豫北(安阳)地区在粮食单产提升和生态系统生产力增强的带动下,子系统健康水平显著改善,但农田生态系统创新力不足导致其健康水平仍以亚健康为主(隶属概率在39.8%~45.2%)。本研究基于不确定性模拟和时空分析方法,准确识别了区域农田生态系统健康水平的变化趋势及其主要影响因素,为提升农业经济发展决策的科学性和准确性提供了理论支撑与数据参考。


关键词: 农业经济, 评估系统, Monte Carlo模拟, 时空特征, 河南省

Abstract: Assessing the health of regional farmland ecosystems from the perspective of uncertainty can improve the scientific basis and accuracy of agricultural economic decision-making. Based on the concept of ecosystem health, we constructed an evaluation index system of farmland ecosystem health considering four dimensions: carrying capacity, productivity, competitiveness, and innovation. Combined with Monte Carlo random simulation, we assessed the influence of weightsetting uncertainty on health evaluation results and revealed the key role of weight changes in the 10-year evaluation. The results showed that grain yield per unit area increased significantly (by 32.9%-56.0%) in Henan Province from 2011 to 2020, but farmland ecosystem health level varied markedly among regions. The Central (Zhengzhou), Southern (Nanyang), and Western (Luoyang) regions were mainly at the sub-healthy level due to high pressure on cultivated land resources, with membership probabilities of 46.3%, 59.3%, and 67.4%, respectively. In contrast, the Eastern (Kaifeng) and Northern (Anyang) regions experienced significant improvements, driven by increased grain yield and enhanced ecosystem productivity. However, insufficient innovation limited the overall health, which remained mainly sub-healthy, with membership probabilities ranging from 39.8% to 45.2%. Based on uncertainty simulation and spatiotemporal analysis, this study accurately identified the trends and main influencing factors of regional farmland ecosystem health levels, and provides theoretical support and data reference for improving the scientific basis and accuracy of agricultural economic decision-making.


Key words: agricultural economy, evaluation index system, Monte Carlo simulation, spatial characteristics, Henan Province