欢迎访问《生态学杂志》官方网站,今天是 分享到:

生态学杂志 ›› 2026, Vol. 45 ›› Issue (1): 266-275.doi: 10.13292/j.1000-4890.202601.019

• 研究报告 • 上一篇    下一篇

基于Sentinel-2遥感数据的高分辨率竹林分布提取及地上生物量估算

姚晓婧1,王大成1*,陈奕达2,陈伟2,焦越1,纪占华3,刘亚岚1,易玲1,项凤华4   

  1. 1中国科学院空天信息创新研究院, 北京 100101; 2中国矿业大学(北京)地球科学与测绘工程学院, 北京 100101; 3武夷学院生态与资源工程学院, 福建武夷山 354300; 4福建智云动能智慧科技有限公司, 福建南平 353000)
  • 出版日期:2026-01-10 发布日期:2026-01-09

High-resolution distribution extraction and aboveground biomass estimation of bamboo forests based on Sentinel-2 remote sensing data.

YAO Xiaojing1, WANG Dacheng1*, CHEN Yida2, CHEN Wei2, JIAO Yue1, JI Zhanhua3, LIU Yalan1, YI Ling1, XIANG Fenghua4   

  1. (1Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100101, China; 2 College of Geoscience and Surveying Engineering, China University of Mining and Technology, Beijing 100101, China; 3College of Ecology and Resource Engineering, Wuyi University, Wuyishan 354300, Fujian, China; 4Fujian Zhiyun Kinetic Intelligence Technology Co., Ltd., Nanping 353000, Fujian, China).

  • Online:2026-01-10 Published:2026-01-09

摘要: 竹林作为重要的碳汇资源,其地上生物量的精准估算对碳循环评估、生态系统碳储量核算及区域碳中和目标落地具有重要意义。针对传统实地调查成本高、单一遥感模型精度低的问题,本文提出了基于Sentinel-2时序遥感数据的竹林地上生物量估算方法体系。首先,通过分析竹林在红外、近红外等波段的时序光谱特征,筛选最佳特征变量,用于构建由随机森林(RF)、XGBoost等多种机器学习模型级联的逐层遥感分类方法,实现竹林与其他地物的高精度分离,为生物量估算奠定空间范围基础。然后,在竹林分布像元内,融合随机森林模型和异速生长方程,构建包含遥感指数、地形因子的地上生物量估算模型。该方法对福建省南平市延平区的竹林进行生物量估算,结果显示:竹林提取总体精度优于0.95,生物量估算精度(R2)达到0.82,显著优于单一遥感模型(精度平均提升28%),最终地上生物量估算总数为6.44×104 t,高值区主要集中在延平区西南部、西北部和东部。该方法有效提供了竹林地上生物量估算的低成本、高时效和可复制的技术方案,为区域碳汇清单编制、森林碳汇交易项目设计和竹林生态系统的精准化管理提供关键数据支撑。


关键词: 生物量估算, Sentinel-2遥感, 机器学习, 逐层分类, 竹林

Abstract: As an important carbon sink, the accurate estimation of aboveground biomass in bamboo forests is highly important for carbon cycle assessment, ecosystem carbon stock accounting, and the implementation of regional carbon neutrality goals. To resolve the problems of high cost in traditional field surveys and insufficient accuracy of single remote sensing models, we proposed a methodological framework for estimating aboveground biomass in bamboo forests based on Sentinel-2 remote sensing data. Firstly, by analyzing the time-series spectral characteristics of bamboo forests in infrared, near-infrared and other bands, optimal variables were selected to construct a layer-by-layer remote sensing classification method cascaded by multiple machine learning models such as random forest (RF) and XGBoost. This method achieved highprecision separation of bamboo forests from other land-cover types with an overall accuracy exceeding 0.95, which built a spatial foundation for biomass estimation. Secondly, within the bamboo distribution pixels, a model for estimating aboveground biomass was developed by integrating the random forest model with allometric equations. The biomass estimation achieved a coefficient of determination (R2) of 0.82, which outperformed single remote sensing models (with an average accuracy improvement of 28%). We applied this method to estimate the biomass of bamboo forests in Yanping District. The results showed that the aboveground biomass was 6.44×104 tons, with high-value areas mainly being concentrated in the southwestern, northwestern, and eastern parts of the district. This approach provided a low-cost, high-efficiency, and replicable solution for estimating aboveground biomass in bamboo forests, offering critical data support for regional carbon sink inventory compilation, forest carbon sink trading project design, and precision management of bamboo forest ecosystems.


Key words: biomass estimation, Sentinel-2 remote sensing, machine learning, layer by layer classification, bamboo forest