欢迎访问《生态学杂志》官方网站,今天是 分享到:

生态学杂志 ›› 2025, Vol. 44 ›› Issue (12): 4187-4197.doi: 10.13292/j.1000-4890.202512.030

• 技术与方法 • 上一篇    下一篇

基于同位素特征值的云南特色有机农产品多模型判别

张力恒1,贾丽欣1,双睿辰1,邵金良2,孟凡乔1,方运霆3,吴迪1,3*   

  1. 1中国农业大学资源与环境学院, 北京 100193; 2云南省农业科学院, 质量标准与检测技术研究所, 昆明 650205; 3中国科学院沈阳应用生态研究所, 沈阳 110016)

  • 出版日期:2025-12-10 发布日期:2025-12-11

Multi-model discrimination on Yunnan’s specialty organic agricultural products based on isotope characteristic values.

ZHANG Liheng1, JIA Lixin1, SHUANG Ruichen1, SHAO Jinliang2, MENG Fanqiao1, FANG Yunting3, WU Di1,3*   

  1. (1College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China; 2Quality Standards and Testing Technology Research Institute, Yunnan Academy of Agricultural Sciences, Kunming 650205, China; 3Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, China).

  • Online:2025-12-10 Published:2025-12-11

摘要: 当前对有机农产品鉴别主要集中在认证标识检测上,尚未发现鉴别有机农产品的有效性状指标。为解决这一问题,本研究基于稳定同位素比值质谱特征值技术,选取云南省典型有机种植认证农场和相邻常规种植区,分别采集黄精、生菜、苹果农产品和土壤样本,通过判别分析(OPLS-DA)和降维分析识别有机与常规样本的差异,筛选关键指标,并利用RandomForest和XGBoost构建机器学习模型,以期建立云南高原特色有机农产品的判别方法。结果表明:有机与常规种植在农产品δ15N、土壤碱解氮等指标之间存在显著差异,农产品δ15N是最重要的有机判别因子,农产品δ13C和总氮含量、土壤δ15N和碱解氮含量是有机种植的显著变异指标。基于δ15N、δ13C等同位素特征和农产品-土壤性质参数指标构建的机器学习模型可实现有机与常规农产品有效判别,准确度超过92%。


关键词: 稳定同位素, 有机产品, 机器学习, 分类器, 真实性鉴别

Abstract: Traditional studies in the identification of organic products mainly focus on detecting certification labels. There were no effective trait indicators for distinguishing organic products. To fill this knowledge gap, we utilized isotope ratio mass spectrometry (IRMS) to differentiate the organic and conventional samples. We selected certified organic farms and adjacent conventional farming areas in Yunnan Province, and collected samples of Polygonatum Sibiricum, lettuce, apples, and soils. Using discriminant analysis (OPLS-DA) and dimensionality reduction analysis, key indicators were identified. Machine learning models such as RandomForest and XGBoost were constructed to develop a method for distinguishing Yunnan’s highland organic products. The results showed that there were significant differences between organic and conventional farming in terms of product δ15N, soil alkali-hydrolyzable nitrogen and other indicators, with δ15N being the most important factor for distinguishing organic products. Product δ13C, total nitrogen content, soil δ15N, and alkali-hydrolyzable nitrogen content were significant indicators of organic farming. The machine learning models built using isotope characteristics such as δ15N and δ13C, along with product-soil property parameters, effectively distinguished the organic and conventional products, achieving an accuracy of over 92%.


Key words: stable isotope, organic product, machine learning, classifier, authenticity identification