欢迎访问《生态学杂志》官方网站,今天是 分享到:

生态学杂志 ›› 2025, Vol. 44 ›› Issue (3): 763-771.doi: 10.13292/j.1000-4890.202503.004

• 研究报告 • 上一篇    下一篇

O2对大豆电子传递速率的影响

安婷1,涂海华2,康华靖3,杨小龙4,王复标5,叶子飘5*
  

  1. (1江西农业大学生物科学与工程学院, 南昌 330045; 2江西农业大学工学院, 南昌 330045; 3温州市农业科学研究院/浙南作物育种重点实验室, 浙江温州 325006; 4南通大学生命科学学院, 江苏南通 226019; 5井冈山大学数理学院生物物理研究所, 江西吉安 343009)

  • 出版日期:2025-03-10 发布日期:2025-06-10

Effect of O2 on the electron transport rate of soybean.

AN Ting1, TU Haihua2, KANG Huajing3, YANG Xiaolong4, WANG Fubiao5, YE Zipiao5*   

  1. (1College of Bioscience and Engineering, Jiangxi Agricultural University, Nanchang 330045, China; 2College of Engineering, Jiangxi Agricultural University, Nanchang 330045, China; 3Wenzhou Academy of Agricultural Sciences/Southern Zhejiang Key Laboratory of Crop Breeding of Zhejiang Provence, Wenzhou 325006, Zhejiang, China; 4College of Life Sciences, University of Nantong, Nantong 226019, Jiangsu, China; 5 Institute of Biophysics, College of Mathematics and Physics, University of Jinggangshan, Ji’an, 343009, Jiangxi, China).

  • Online:2025-03-10 Published:2025-06-10

摘要:

O2作为放氧光合作用的一个重要产物以及1,5-二磷酸核酮糖(RuBP)羧化反应的竞争者,在光合作用和有机物的积累过程中具有重要的作用。本研究应用LI-6400-40光合作用测定仪测定了2%、11%、21%和31% O2浓度时大豆(Glycine max)叶片的荧光和气体交换数据,以及叶绿素含量。然后用光响应机理模型对电子传递速率光响应曲线进行了拟合。结果表明:4种O2浓度下大豆叶片的最大电子传递速率(Jmax)之间存在显著差异,且O2浓度越高,其Jmax值越大,其中,31% O2浓度下大豆叶片的Jmax是2% O2浓度下的2.15倍;用光响应机理模型解释了O2浓度显著影响大豆叶片Jmax原因,即不同O2浓度影响大豆叶片叶绿素有效光能截面;此外,31% O2浓度下大豆叶片捕光色素分子的最小平均寿命(τmin)远小于2% O2浓度下大豆叶片的τmin,这可能导致前者大豆叶片激子的利用效率(Φ)高于后者。本研究结果为探究不同O2浓度对大豆叶片的电子传递速率以及叶绿素分子的物理特性的影响提供理论依据和研究工具。



关键词: 大豆, 本征光能吸收截面, 有效光能吸收截面, 光合机理模型, 电子传递速率

Abstract: O2 plays an important role in photosynthesis and organic matter accumulation as a byproduct of oxygen-releasing photosynthesis and as a competitor to the carboxylation reaction of ribulose 1,5-diphosphate (RuBP). We used a LI-6400-40 photosynthetic analyzer to measure the fluorescence and gas exchange of soybean (Glycine max) leaves at 2%, 11%, 21% and 31% O2 concentrations. A mechanistic model for the photosynthesis-light response was used to fit the light-response curve of the electron transport rate. The results showed that there were significant differences in the maximum electron transfer rate (Jmax) of soybean leaves under different O2 concentrations, with greater Jmax values under higher O2 concentrations. The Jmax of soybean leaves at 31% O2 concentration was 2.15 times higher than that at 2% O2 concentration. The mechanism model was used to elucidate the underlying reason for the substantial impact of O2 concentration on Jmax, which can be attributed to the modulation of O2 concentration on effective light energy cross-section of chlorophyll. Furthermore, the minimum average life-time of harvesting pigment molecules (τmin) in soybean leaves at 31% O2 concentration was far shorter than that at 2% O2 concentration, which may lead to a higher exciton utilization efficiency (Φ) in the former. This study provides a theoretical basis and research tools for investigating the influences of O2 concentrations on the electron transfer rate of soybean leaves and the physical characteristics of chlorophyll molecules.


Key words: Glycine max, eigen-absorption cross-section, effective light absorption cross-section, photosynthetic mechanistic model, electron transport rate