欢迎访问《生态学杂志》官方网站,今天是 分享到:

生态学杂志

• 研究论文 • 上一篇    下一篇

种植密度对川中丘区夏玉米冠层结构、干物质积累及产量的影响

马晓君1,路明远2,李兰3,李强1,吴雅薇1,刘晓林1,王兴龙1,金容1,袁继超1,孔凡磊1*   

  1. (1农业部西南作物生理生态与耕作重点实验室/四川农业大学农学院, 成都 611130;2北京顺鑫农科种业科技有限公司, 北京 100097; 3成都市农林科学院, 成都 611130)
  • 出版日期:2018-03-10 发布日期:2018-03-10

Effects of planting density on canopy structure, dry matter accumulation and yield of summer maize in a hilly region of central Sichuan Province, China.

MA Xiao-jun1, LU Ming-yuan2, LI Lan3, LI Qiang1, WU Ya-wei1, LIU Xiao-lin1, WANG Xing-long1, JIN Rong1, YUAN Ji-chao1, KONG Fan-lei1*   

  1. (1Key Laboratory of Crop Ecophysiology and Farming System in Southwest China, Ministry of Agriculture, College of Agronomy, Sichuan Agricultural University, Chengdu 611130, China; 2Beijing Shunxin Agriculture Co., Ltd, Beijing 100097, China; 3Chengdu Academy of Agriculture and Forestry Sciences, Chengdu 611130, China).
  • Online:2018-03-10 Published:2018-03-10

摘要: 通过设置4.50×104、5.25×104、6.00×104、6.75×104、7.50×104株·hm-2(分别用T1、T2、T3、T4、T5表示)5个密度,研究种植密度对玉米冠层结构、干物质积累及产量的影响,为川中丘区夏玉米高产栽培提供理论依据和技术支撑。结果表明:随种植密度增加,玉米叶面积指数显著增加,茎粗、茎叶夹角和透光率显著降低;密度每增加1×104株·hm-2,茎粗分别降低1.4 mm(2015年)和1.3 mm(2016年),穗下、穗上第1叶夹角分别降低3.601°、1.440°,吐丝期和灌浆中期底层透光率分别降低3.73%和2.82%;玉米单株干物质积累随种植密度增加显著降低,T5较T1在成熟期分别降低37.13%(2015年)、25.95%(2016年);而群体干物质随种植密度呈增加趋势,2016年T5较T1在吐丝后7天、成熟期分别增加了26.72%、23.41%;玉米产量随种植密度呈先增后降的变化趋势,在密度为6.00×104株·hm-2下产量最高;该密度下玉米群体和个体功能达到协同增益,玉米产量构成(有效穗数、穗粒数和千粒重)协调,是产量提高的主要原因。

关键词: 土壤水分, 电导率, 产量, 灌溉, 施肥量

Abstract: Five planting densities (4.50×104, 5.25×104, 6.00×104, 6.75×104 and 7.50×104 plants·hm-2, designated as T1, T2, T3, T4 and T5, respectively) were set up to explore the effects of planting density on canopy structure, dry matter accumulation and yield of summer maize, aiming to provide theoretical basis and technical support for highyield cultivation ofsummer maize in the hilly area of central Sichuan, China. The results showed that with the increase of planting density, leaf area index (LAI) of maize was significantly increased, whereas the stem diameter, the angle between stem and leaf, and the transmittance were significantlydecreased. With the planting density increasing by 1×104 plants·hm-2, the stem diameterdecreased by 1.4 mm in 2015 and 1.3 mm in 2016, the first leaf angles uppermost and underneath ear reduced by 3.601° and 1.440°, and the bottom transmission at silking and midfilling stages reduced by3.73% and 2.82%, respectively. The dry matter accumulation of individual maize was significantly decreased, while the dry matter increased with the increase of planting density. Compared with T1, the dry matter accumulation of per individual in T5 decreased by37.13% (2015),25.95% (2016) at the maturity stage, and the dry matter accumulation at communitylevel of 2016 increased by 26.72%, 23.41% in 7 days after silking and at the maturity stage, respectively. With the increase of planting density, the yield of summer maize firstincreased and then decreased, with the highest value being found at 6.00×104 plants·hm-2. At such a density, the group and individual function of maize reached a synergistic gain and maize yield compositions (effective panicle number, grains per spike and grain weight) were coordinated, which accounted for the increase of maize yield.

Key words: soil water, irrigation, fertilizer amount, electrical conductivity, yield