欢迎访问《生态学杂志》官方网站,今天是 分享到:

生态学杂志

• 方法与技术 • 上一篇    下一篇

空间视角下的多尺度生态环境质量评价方法

柴燕妮1,2,魏冠军1,侯伟3,冯志贤3,4,翟亮3*   

  1. 1兰州交通大学测绘与地理信息学院, 兰州 730070;2甘肃省地理国情监测工程实验室, 兰州 730070; 3中国测绘科学研究院, 北京 100830;4城市空间信息工程北京市重点实验室, 北京 100830)
  • 出版日期:2018-02-10 发布日期:2018-02-10

Multi scale eco-environmental quality evaluation method from a spatial perspective.

CHAI Yan-ni1,2, WEI Guan-jun1, HOU Wei3, FENG Zhi-xian3,4, ZHAI Liang3*   

  1. (1Faculty ofGeomatics, Lanzhou Jiaotong University, Lanzhou 730070, China; 2Gansu Provincial Engineering Laboratory for National Geographic State Monitoring, Lanzhou 730070, China; 3Chinese Academy of Surveying and Mapping, Beijing 100830, China; 4Beijing Key Laboratory of Urban Spatial Information Engineering, Beijing 100830, China).
  • Online:2018-02-10 Published:2018-02-10

摘要: 以PSR模型为理论基础构建评价指标体系,并基于模糊神经网络在市域范围内以区县和主体功能区为评价单元对北京市2007、2015年的生态环境质量进行了定量评估。结果表明:1)北京市生态环境质量等级由高到低依次为:远郊区县、近郊区县、中心城区;2)北京市生态涵养发展区与禁止开发区域的生态环境质量等级明显高于其他类型主体功能区;3)2007、2015年北京市北部与西南部地区生态环境质量等级基本保持在Ⅱ的水平,东南部部分地区的生态环境质量等级在逐渐提高,而北京市中部与近郊区县等相当一部分地区的生态环境质量等级在近几年来有降低的趋势。

关键词: 代谢组分, 增温, 养分, 减少降水, 季节

Abstract: This study shows the efforts for establishing an evaluation index system based on the PSR (Pressure-State-Response) model. With the support of the fuzzy neural network, the eco-environment quality of Beijing in 2007 and 2015 was quantitatively assessed using different report units, e.g., county and major function oriented zone (MFOZ). The results showed that: (1) The grade of eco-environment in Beijing from high to low ranged as: far suburbs, near suburbs and downtowns. (2) The eco-environmental quality of ecological conservation development zone and prohibited development area of MFOZ was superior to other types of MFOZ. (3) The eco-environment quality grades of the northern and southwestern areas of Beijing were at level Ⅱ in 2007 and 2015, and the eco-environment quality grade in the southeastern part was gradually increasing, while the eco-environment quality in central and near suburbs of Beijing showed adeterioration trend from 2007 to 2015.

Key words: warming, nutrient, metabolome, season, reduced precipitation