[1] 郭秀珍,毕国昌.1989.林木菌根及应用技术[M].北京:中国林业出版社,1~4. [2] 姜学艳,黄艺.2003.菌根真菌增加植物抗盐碱胁迫的机理[J].生态环境,12(3):353~356. [3] 常学秀,段昌群,王焕校.2000.根分泌作用与植物对金属毒害的抗性[J].应用生态学报,11(2):315~320. [4] 黄艺,陶澍,陈有键,等.2000.外生菌根对欧洲赤松苗(Pinus sylvestris)Cu,Zn积累和分配的影响[J].环境科学,21(2):1~6. [5] 黄艺,陶澍.2001.过量铜,锌对外生菌根菌牛乳牛肝菌生物量,呼吸和糖酵解酶活性的影响[J].植物生理学报,27(4):303~308. [6] 廖继佩,林先贵,曹志洪.2003.内外生菌根真菌对重金属的耐受性及机理[J].土壤,35(5):370~377. [7] 魏树和,周启星.2004.重金属污染土壤植物修复基本原理及强化措施探讨[J].生态学杂志,23(1):65~72. [8] Aggangan NS, Dell B, Malajczuk N. 1998. Effects of chromium and nickel on growth of the ectomycorrhizal fungus Pisolithus and formation of ectomycorrhizas on Eucalyptus urophylla S. T [J]. Blake Geoderma, 84:15~27. [9] Ahonen-Jonnarth U, van Hees PAW, Lundstrom U, et al. 2000.Production of organic acid by mycorrhizal and non-mycorrhizal Pin us sylvestris seedlings exposed to elevates concentrations of aluminium and heavy metals[J]. New Phytol., 146:557~567. [10] Ajungla T, Sharma GD, Dkhar MS. 2003. Heavy metal toxicity on dehydrogenase activity on rhizospheric soil of ectomycorrhizal pine seedlings in field condition [J]. J. Environ. Biol., 24 (4):461 ~463. [11] Ashford AE, Peterson CA, Carpenter JL. et al. 1998. Structure and permeability of the fungal sheath in the Pisonia mycorrhiza [J]. Protoplasma, 147:149~161. [12] Ashford AE, Peterson RL, Dwarte D, et al. 1986. Polyphosphate granules in eucalypt mycorr-hizas: determination by energy-dispersive x-ray microanalysis[J]. Can .J. Bot., 64:677~687. [13] Berthelsen CS, Rygiewicz PT. 1995. Ectomycorrhizal heavy metal accumulation as a contributing factor to heavy metal levels in organic surface soils[J]. Sci. Toc. Environ., 170:141~149. [14] Bradley R, Burt AJ, Read DJ. 1981. Mycorrhizal infection and resistance to heavy metal toxicity in Calluna vulgaris [J]. Nature, 292:335 ~337. [15] Bradley R, Burt A J, Read DJ. 1982. The biology of mycorrhiza in the ericaceae Ⅷ. The role of mycorrhizal infection in heavy metal resistance[J]. New Phytol. , 91:197~209. [16] Brunner I, Frey B. 2000. Detection and localization of aluminumand heavy metals in ecto-mycorrhizal Norway spruce seedlings [J]. Environ. Poll., 108:121~128. [17] Brown MT, Wilkins DA. 1985a. Zinc tolerance of mycorrhizal Betula[J]. New Phytol., 99:101~106. [18] Bucking H, Heyser W. 1994. The effect of ectomycorrhizal fungi on Zn uptake and distribution in seedlings of Pinus sylvestris L.[J]. Plant Soil, 167:203 ~212. [19] Clegg S, Gobran G. 1995. Effects of aluminium on growth and root reactions of phosphorus stressed Betula pendula seedlings [J]. Plant Soil, 169:173~178. [20] Colpaert J, Assche J. 1992. Zinc toxicity in ectomycorrhizal Pinus sylvestris [J]. Plant Soil, 143: 201~211. [21] Colpaert J, Assche J. 1993. The effects of cadmium on ectomycorrhizal Pinus sylvestris L. [J]. New Phytol . , 123:325~333. [22] Colpaert JV, Vanassche JA. 1987. Heavy metal tolerance in some ectomycorrhizal fungi[J]. Funct. Ecol., 1:415 ~421. [23] Denny H, Ridge I. 1995. Fungal slime and its role in the mycorrhizal amelioration of zinc toxicity to higher plants[J]. New Phytol., 130:251 ~257. [24] Denny HJ, Wilkins DA. 1987. Zinc tolerance in Betula spp. Ⅰ.Effect of external concentration of Zinc on growth and uptake [J]. New Phytol., 106: 517~524. [25] Denny HJ, Wilkins DA. 1987b. Zinc tolerance in Betula spp. Ⅳ.The mechanismofecto-mycorrhizal amelioration of zinc toxicity [J]. New Phytol., 106: 545~553. [26] Galli U, Meier M, Brunold C. 1993. Effects of cadmium on nonmycorrhizal and mycorrhizal Norway Spruce seedlings and its ectomycorrhizal fungus Lacaria Bk and Br-sulfate reduction, thiols and distribution of the heavy metal[J]. New Phytol., 125:837~843. [27] Griffiths RP, Baham JE, Caldwell BA. 1994. Soil solution chemistry of ectomycorrhizal mats in forest soil [J]. Soil Biol.Biochem., 26: 331~337. [28] Hartley J, Caimey JWG, Freestone P, et al . 1999. The effects of multiple metal contamination on ectomycorrhizal Scots pine (Pinus sylvestris ) seedlings[J]. Environ. Pollut. , 106:413~424. [29] Harley JL. 1969. The Biology of Mycorrhiza [M]. London:Leonard Hill, 3138. [30] Hartley-Whitaker J, Cairney JWG, Meharg AA. 2000. Sensitivity to Cd or Zn of host and symbiont of ectomycorrhizal Pinus sylvestris L. (Scots pine) seedlings[J]. Plant Soil, 218(1~2):31~42. [31] Hudson HJ. 1986. Fungal Biology[M]. London:Edward Arnold,183~184. [32] Jackson RM, Mason PA. 1984. Mycorrhiza[M]. London: Edward Arnold, 1~3. [33] Jentschke G, Fritz E, Marschner P, et al. 1997. Mycorrhizal colonization and lead distribution in root tissues of Norway spruce seedlings[J]. Z P flanzenernahr Bodenkd , 160:317~321. [34] Jentschke G, Godbold DL. 2000. Metal toxicity and ectomycorrhizas[J]. Physiol. Plantarum, 109:107~116. [35] Jones Md, Hutchinson TC. 1986. The effect of mycorrhizal infection on the response of Betula papyrifera to nickel and copper[J]. New Phytol., 102: 429~442. [36] Katia K, Van T. 2001. Ectomycorrhizal protection of Pinus sylvestris against copper toxicity[J]. New Phytol., 150:203~213. [37] Kulaev IS, Vagabov M. 1983. Polyphosphate metabolism in microorganisms[J]. Adv. Microbiol. Physiol., 24: 83~158. [38] Ledin M, Krantz-Rulcker C, Allard B. 1999. Microorganisms as metal sorbents: comparison with other soil constituents in multicompartment systems [J]. Soil Biol. Biochem., 31:1639 ~1648. [39] Leyval C, Berthelin J. 1993. Rhizodeposition and net release of soluble organic compounds by pine and beech seedlings inoculates with rhizobacteria and ectomycorrhizal fungi [J]. Biol. Fertil.Soils, 15: 259~267. [40] Marschner P, Godbold DL, Jentschke G. 1996. Dynamics of lead accumulation in mycorrhizal and non-mycorrhizal Norway spruce (Picea abies(L. )Karst) [J]. Plant Soil, 178:239~245. [41] Marschner P, Jentschke G, Godbold DL. 1998. Cation exchange capacity and lead sorption in ecto-mycorrhizal fungi [J]. Plant Soil, 205: 93~98. [42] Martin F, Rubini P, Cote R, et al. 1994a. Aluminium polyphosphate complexes in the mycorrhizal basidiomycete Laccaria bicolor: A 27Al-nuclear magnetic resonance study [J]. Planta,194: 241~246. [43] Orlovich DA, Ashford AE. 1993. Polyphosphate granules are an artefact of specimen preparation in the ectomycorrhizal fungus Pisolithus tinctorius [J]. Protoplasma, 173:91~102. [44] Paul CF, Tam A. 1995. Heavy metal tolerance by ectomycorrhizal fungi and metal amelioration by Pisolithus tinctorius [J]. Mycorrhiza, 5(3): 181~187. [45] Perotto S, Martino E. 2001. Molecular and cellular mechanisms of heavy metal tolerance in mycorrhizal fungi: what perspectives for bioremediation? [J]. Minerva Biotechnol., 13(1) :55~63. [46] Rigou L, Mignard E, Plassard C. Et al. 1995. Influence of ectomycorrhizal infection on the rhizosphere pH around roots of maritime pine ( Pinus pinaster Soland in Ait. ) [J]. New Phytol.,130:141~147. [47] Sun YP, Unestam T, Lucas SD. et al. 1999. Exudation-reabsorption in a mycorrhizal fungus, the dynamic interface for interaction with soil and other microorganism[J]. Mycorrhiza, 9:137 ~144. [48] Thomas O, Eberhard F, Andrea P. 2002. Charactsrisation of anti-oxidative systems in the mycorthiza-building basidiomycete Paxillus involutus (Bartsch) Fr. and its reaction to cadmium[J]. Microbiol.Ecol., 42:359~366. [49] Turnan K, Przybylowicz WJ, Mesjasz-Przybylowicz J. 2001. Heavymetal distribution in Suillus luteus mycorrhizas-as revealed by microPIXE analysis[J]. Nucl . Instrum. Meth . B, 181:649~658. |