生态学杂志 ›› 2004, Vol. ›› Issue (5): 198-205.
梁战备, 史奕, 岳进
收稿日期:
2004-03-30
修回日期:
2004-05-26
出版日期:
2004-10-10
通讯作者:
史奕
基金资助:
LIANG Zhanbei, SHI Yi, YUE Jin
Received:
2004-03-30
Revised:
2004-05-26
Online:
2004-10-10
摘要: 甲烷氧化菌以甲烷为其唯一的碳源和能源,在全球大气甲烷平衡中起着重要的作用,它还可以降解卤代化合物,在污染治理方面具有潜在价值。本文从甲烷氧化菌的分类出发,对甲烷氧化菌氧化甲烷的机理及影响因素、甲烷氧化菌的生理、生态分布及检测方法、甲烷氧化菌降解有机污染物的潜在应用等作一综述,分析目前研究中存在的问题,并指出今后应加强研究的方面。
中图分类号:
梁战备, 史奕, 岳进. 甲烷氧化菌研究进展[J]. 生态学杂志, 2004, (5): 198-205.
LIANG Zhanbei, SHI Yi, YUE Jin. Advances in the research of methanotroph[J]. cje, 2004, (5): 198-205.
[1] Amaral JA, Ekins A. 1998. Effect of selected monoterpenes on methane oxidation, denitrification, and aerobic metabolism by bacteria in pure culture[J]. Appl. Environ. Microbiol., 64:520~525. [2] Auman AJ, Stolyar S, Anney L. 2000. Molecular characterization of methanotrophic isolates from freshwater lake sediment [ J ].Appl . Environ. Microbiol . , 66: 5259~5266. [3] Auman AJ, Stolyer S. 1997. Molecular characterization of methanotrophic isolates from paddy soil [ J ]. Appl. Environ.Microbiol., 63: 349~357. [4] Balkwill DL, Leach FR. 1988. Equivalence of microbial biomass measures based on membrane lipid and cell wall components,adenosine triphosphate and direct counts in subsurface aquifer sediments[ J ]. Microb. Ecol., 16:73~84. [5] Bedard C, Knowles R. 1989. Physiology, biochemistry, and specific inhibitors of CH4, NH4+ and CO oxidation by methanotrophs and nitrifers[ J ]. Microbiol. Rev., 53: 68~84. [6] Bender M, Conrad R. 1995. Effect of CH4 concentrations and soil conditions on the induction of CH4 oxidation activity [ J ]. Soil.Biol. Biochem . , 27:1517~1527. [7] Blake DR, Rowland RS. 1988. Continuing worldwild increase in tropospheric methane, 1978~1987 [J]. Science, 239: 1129~1131. [8] Bodelier PL, Frenzel EF. 1999. Contribution of methanotrophic and nitrifying bacteria to CH4 and NH4 + oxidation in the rhizosphere of rice plants as determined by new methods of discrimination[ J ]. Appl. Environ. Microbiol., 65:1826~1833. [9] Bodelier PL, Roslev EP. 2000. Stimulation by ammonium-based fertilizers of methane oxidation in soil around rice roots[J]. Nature, 403: 421~424. [10] Bodrossy L, Holmes EM. 1997. Analysis of 16S rRNA and methane monooxygenase gene sequences reveals a novel group of thennotolerant and thermophilic methanotrophs, Methylocaldum gen. nov [ J ].Arch. Microbiol., 168: 493~503. [11] Bosse U, Frenzel P. 1997. Activity and distribution of CH4-oxidizing bacteria in flooding rice microcosmas and in rice plants(Oryza sativa) [J]. Appl. Environ. Microbiol., 63:1199~1207. [12] Bourne DG, Mcdonald IR. 2001. Comparison of pmoA PCR primer sets as tools for investigating methanotroph diversity in three Danish soils[J]. Appl . Environ. Microbiol . , 67:3802~3809. [13] Bowman DG, Sly LI. 1995. The phylogenetic position of the family Methylococcaceae [J]. Int. J. Syst . Bacteriol . , 45: 182~185. [14] Bowman JP, Skerratt JH. 1991. Phospho-lipid fatty acid and lipopolysaccharide fatty acid signature lipida in methane-utilizing bacteria[ J ]. FEMS Microbiol. Ecol., 85:15~22. [15] Bowman JP, McCammon SA. 1997. Methylosphaera hansonii gen. nov., a psychrophilic, group 1 methanotroph from Antarctic marine-salinity, meromictic lakes[J]. Microbiology, 143:1451 ~1459. [16] Bowman JP. 1984. Family Methylocystaceae fam. nov[A]. In:Garrity GM. ed. Bergey's Mannul of Systematic Bacteriology (2nd ed., Vol. 2.) [ C]. New York: Springer-Verlag, 114~125. [17] Boxrukova LV, Nikolenko YI. 1983. Comparative serological analysis of methanotrophic bacteria[ J ]. Microbiology, 52: 639~643. [18] Brusseau GA, Tsien HC. 1990. Optimization of trichloroethylene oxidation by methanotrophs and the use of a colorimetric assay to detect soluble methane monooxygenase activity[J]. Biodegradation,1:19~29. [19] Burrow KJ, Cornish A, Hungate JR, et al. 1984. Substrate specificities of the soluble and particulate methane monooxygenases of Methylosinus trichosporium OB3b [ J ]. J . Gen. Microbiol . , 5:335~342. [20] Cai ZC, Yan XY. 1999. Kinetic model for methane oxidation by paddy soil as affected by temperature, moisture and N addition [J]. Soil. Biol. Biochem., 31: 715~725. [21] Cheng YS, Halsey J L. 1999. Detection of methanotrophs in groundwater by PCR[ J ]. Appl . Environ. Microbiol . , 65: 648~651. [22] Cicerone RJ, Oremland RS. 1998. Biogeochemical aspects of atmospheric methane [J]. Global. Biogeochem. Cycles, 2: 299~327. [23] Collins MLP, Bucholzl LA. 1991. Effect of copper on Methylosinus albus BG8 [ J ]. Appl. Environ. Microbiol., 57: 1261 ~1264. [24] Conrad R. 1984. Capacity of aerobic microorganisms to utilize and grow on atmospheric trace gases[A]. In: Klug MG, eds.Current Perspectives in Microbial Ecology [ C ]. Washington DC:American Society for Microbiology, 461~467. [25] Conrad R. 1999. Soil microorganisms oxidizing atmospheric trace gases (CH4, CO, H2, NO)[J]. Indian J. Microbiol., 39:193~203. [26] Dalton H, Leak DJ. 1985. Methane oxidation by microorganisms [A]. In: Poole RK, eds. Microbial Gas Metabolism: Mechanistic, Metabolic and Biotechnological Aspects [ C]. London: Academic Press, Inc. Ltd., 173~200. [27] De Angelis MA, Baross JA. 1991. Enhanced microbial methane oxidation in water from a deep-sea hydrothermal vent field at simulated in situ hydrostatic pressures[J ]. Limnol. Oceanogr.,36: 570~577. [28] De Angelis MA. 1989. Studies of microbial methane oxidation in deep-sea hydrothermal plumes[ J ]. Limnol. Oceanogr, 33: 34 ~56. [29] Dedysh SN, Derakshani M. 2001. Detection and enumeration of methanotrophs in acidic Sphagnum peat by 16S rRNA fluorescence in situ hybridization, including the use of a newly developed oligonucleotide probe for Methylocella palustris [J ]. Appl.Environ. Microbiol., 67: 4850~4857. [30] Dedysh SN, Derakshani M. 2000. Phospholipid and lipopolysaccharide normal and hydroxy fatty acids as potential signatures for methaneoxidizing bacteria[ J ]. Appl. Environ. Microbiol . , 66:547~553. [31] Dedysh SN . 1996. Enrichment, isolation and some properties of methane utilizing bacteria [ J ]. Soil. Biol. Biochem., 98: 101 ~108. [32] Dedysh SN, Panikov NS. 1998. Isolation of acidophilic methaneoxidizing bacteria from northern peat werlands [J ]. Science,282: 281~284. [33] Dispirito AA, Gulledge J. 1992 . Trichloroethylene oxidation by the membrane associated methane monooxygenase in type Ⅰ,type Ⅱ, and type X methanotrophs [J]. Biodegradation., 2:151~164. [34] Dunfield PF, Liesack W. 1999. High-affinity methane oxidation by a soil enrichment culture containing a type Ⅱ methanotroph [J]. Appl . Environ. Microbiol . , 65:1009~1014. [35] Duxbury JM, Mosier AR. 1993. Status and issues concerning agricultural emissions of greenhouse gases[A]. In: Drennen TE,eds. Agricultual Dimensions of Global Climate Change[ C]. Delray Beach, Fla: St. Lucie Press, 229~258. [36] Eller G, Frenzel P. 2001. Changes in activity and community structure of methane-oxidizing bacteria over the growth period of rice[ J ]. Appl. Environ. Microbiol., 67: 2395~2403. [37] Fang JS, Barcelona MJ. 2000. Cheracterization of methanotrophic bacteria on the basis of intact phospholipid profiles [ J ]. FEMS Microbiol. Lett. , 189:67~72. [38] Frans-Jaco WA. 1997. Spatial distribution and inhibition by ammonium of methane oxidation in intertidal freshwater marshes [ J ]. Appl. Environ. Microbiol., 63: 4734~4740. [39] Fuse H, Ohta M. 1998. Oxidation of trichloroethylene and dimethyl sulfide by a marine Methylomicrobium strain containing soluble methane monooxygenase[ J ].Biosci.Biotechnol. Biochem., 62:1925~1931. [40] Gilbert B, Mcdonald IR. 2000. Molecular analysis of the pmo (particulate methane monooxygenase)operons from two type Ⅱmethanotrophs[ J ]. Appl. Environ. Microbiol., 66: 966~975. [41] Gilbert B, Assmus B. 1998. In situ localization of two methanotrophic strains in the rhizosphere of rice plants[J]. FEMS Microbiol . Ecol., 25:117~128. [42] Gilbert B, Frenzel H. 1995. Methanotrophic bacteria in the rhizosphere of rice microcosms and their effect on porewater methane concentration and methane emission[J]. Biol. Fertil. Soils, 20:93~100. [43] Gilbert B, Frenzel P. 1998. Rice roots and CH4 oxidation the activity of bacteria, their distribution and the microenvironment [J]. Soil. Biol. Biochem . , 30:1903~1916. [44] Green PN. 1992. Taxonomy of methylotrophic bacteria[A]. In:Murrel JC, eds. Microbial Growth on C1 Compounds [ C ]. London: Intercept Press Ltd., 23~84. [45] Gucker JB, Ringleberg DB. 1991. Membrane fatty acids as phenotypic markers for the polyphasic approach to taxonomy of methylotrophs within the Proteobacteria [ J ]. J. Gen. Microbiol., 137:2631 ~2641. [46] Gulledge J, Ahmad R, Gilbert NA. 2001. Family- and genus-level 16S rRNA-targeted oligonucleotide probes for ecological studies of methanotrophic bacteria[J]. Appl. Environ. Microbiol., 67:4726~4733. [47] Hanson RS. 1992. Introduction[A]. In: Murrell JC, eds. Methane and Methanol Utilizers[C]. New York:Plenum Press, 1~22. [48] Hanson RS, Netrusov AI. 1991. The obligate methanotrophic bacteria Meth ylococ cus , Meth ylomonas , Meth ylosinus and related bacteria [ A]. In: Balows A, eds. The Prokaryotes [ C ]. New York: Springer Verlag, 2350~2365. [49] Hanson RS, Hanson TE. 1996. Methanotrophic bacteria[J ]. Microbiol . Rev., 60:439~471. [50] Hazen T. 1992. Test plan for in situ bioremediation demonstration of the Savannah River[A]. In: Aiken SC, eds. Integrated Demonstration[project DOE/OTD TTP no. SR 0566 -01(u)].Aiken SC:Westinghouse Savannah River Co., 152~164. [51] Henckel T, Roslev P. 2000. Effect of O2 and CH4 on prersence and activity of the indigenous methanotrophic community in rice field soil[J]. Appl . Environ. Microbiol . , 2: 666 ~679. [52] Henckel T, Jackel U. 2000. Melocular analyses of novel methanotrophic communities in forest soil that oxidize atmospheric methane[ J ]. Appl. Environ. Microbiol., 66:1801~1808. [53] Hoehler TM, Alperin MJ. 1994. Field and laboratory studies of methane oxidation in an anoxic marine sediment: evidence for a methanogen-sulfate reducer consortium[J]. Global Biogeochem.Cycle., 8:451 ~463. [54] Holmes AJ, Costello A. 1995. Evidence that particulate methane monooxygenase and ammonia monooxygenase may be evolutionarily related[J ]. FEMS Microbiol. Lett., 132:203~208. [55] Jensen S, Priame A. 1998. Methanol improves methane uptake in starved methanotrophic microorganisms [ J ]. Appl. Environ.Microbiol., 64:1143~1146. [56] King GM, Schnell S. 1994. Ammonium and nitrite inhibition of methane oxidation by Methylobacter albus BG8 and Methylosinus trichosporium OB3b at low methane concentrations[ J ]. Appl. Environ. Microbiol . , 60: 3508~3513. [57] Leak DJ, Dalton H. 1986. Growth yields of methanotrophs. 1.Effect of copper on the energetics of methane oxidation[J]. Appl. Microbiol . Biotechnol . , 23: 470~476. [58] Leak DJ. 1992. Biotechnological and applied aspect of methane and methanol utilizer [ A]. In: Murrell JC, eds. Methane and Methanol Utilizers[ C]. New York :Plenum Press, 245~282. [59] LeMer J, Escoffier S. 1996. Microbiological aspects of methane emission by a ricefield soil from the Camargue (France)2.Methanotrophy and related microflora[J]. Eur. J. Soil. Biol.,32:71~80. [60] Lipscomb JD. 1994. Biochemistry of the soluble methane monoxygenase[J]. Annu . Rev. Microbiol . , 48: 371~399. [61] Little CK, Palumbo AV. 1988. Trichloroethylene biodegradation by a methane-oxidizing bacterium[J]. Appl. Environ. Microbiol., 45: 371~399. [62] Mandernack KW, Kinney KM. 2000. The biogeochemical controls of N2O production and emission in landfill cover soils: the role of methanotrophs in the nitrogen cycle[J]. Environ. Microbiol., 2:298~309. [63] Mcdonald IR. 1997. The methanol dehydrogenase structural gene mxaF and its use as a functional gene probe for methanotrophs and methylotrophs[J ]. Appl. Environ. Microbiol., 63:3218~3224. [64] Mcfarland MJ, Vogel CM. 1992. Methanotrophic cometabolism of trichloroethylene(TCE) in a two stage bioreator system[J].Water Res., 26: 259~265. [65] Megraw SR, Knowles R. 1989. Effect of picolinic acid (2-pyridine carboxylic acid) on the oxidation of methane and ammonia in soil and in liquid culture[J]. Soil. Biol. Biochem., 89:11 ~20. [66] Mikal GW, Mc Arthur JV, Shimkets LJ. et al. 1999. Methanotroph diversity in landfill soil: Isolation of novel type I methanotrpohs whose presence was suggested by culture-independent 16S Ribosomal DNA analysis[J]. Appl. Environ. Microbiol.,65(11) :4887-4897. [67] Mosier A, Schimel D. 1991. Methane and nitrous oxide fluxes in native, fertilized and cultivated grasslands [ J ]. Nature ( London), 350: 330~332. [68] Murrel JC, Gilbert B. 2000. Molecular biology and regulation of methane monooxygenase [ J ]. Arch. Microbiol., 173: 325 ~332. [69] Murrell JC, Dalton H. 1983. Nitrogen fixation in obligate methanotrophs[J] .J. Gen. Microbiol., 129:3481~3486. [70] Nguyen HT, Sheimke AK. 1994. The nature of the copper ions in the membranes containing the particulate methane monoxygenase from Methylococcus capsulatus (bath) [ J ]. J . Biol. Chem.,69:14995~15005. [71] Nguyen HT, Elliot SJ. 1998. The particulate methane monooxygenase from Methylococcus capsulatus (Bath) is a novel coppercontaining three-subunit enzyme[J]. J. Biol. Chem., 273: 7957~7966. [72] Nicbola PD, Smith GA, Wallace JB, et al. 1985. Phospholipid and lipopolysaccharide normal and hydroxy fatty acids as potential signatures for methane-oxidizing bacteria[J]. FEMS Microbiol. Ecol., 31:327~335. [73] Nicolaidis AA, Sargent AW. 1987 Isolation of methane monooxygenase-deficient mutants from Methylosinus trichosporium OB3b[J ]. FEMS Microbiol. Lett., 41: 47~52. [74] O'Neill JG, Wilkinson JF. 1977. Oxidation of ammonia by methaneoxidizing bacteria and the effects of ammonia on methane oxidation [J] . J . Gen. Microbiol . , 100:407~412. [75] Oldenhuis R, Vink RL. 1989. Degradation of chlorinated aliphatic hydrocarbons by Methylosinus trichosporium OB3b expressing soluble methane monooxygenase [ J ]. Appl. Environ. Microbiol., 55: 2819~2826. [76] Prior SD, Dalton H. 1985. Acetylene as a suicide substrate and active site probe for methane monooxygenase from Methylococcus capsulatus (Bath) [J]. FEMS Microbiol . Lett . , 29:105 ~109. [77] Roslev P, Iversen N. 1997. Oxidation and assimilation of atmospheric methane by soil methane oxidizers[J]. Appl. Environ.Microbiol., 63: 874~880. [78] Schnell S, King GM. 1995. Stability of methane oxidation capacity to variations in methane and nutrient concentrations [ J ].FEMS Microbiol. Ecol., 17: 285~294. [79] Shen RN, Yu CL. 1997. Direct evidence for a soluble methane monooxygenase from type I methanotrophic bacteria: purification and properties of a soluble methane monooxygenase from Methylomonus sp. GYJ3 [ J ]. Arch. Biochem. Biophys., 345:223~229. [80] Sohngen NL. 1906. Uber bakterien, welche methan ab kohlenstoffnahrung and energiequelle gebranchen[J ]. Parasitenkd Infectionskr Abt., 15: 513~517. [81] Stirling DI, Dalton H. 1977. Effect of metal binding agents and other compounds on methane oxidation by two strains of Methylococcus capsulatus [ J ]. Arch. Microbiol . , 114: 71~76. [82] Trotsenko YA, Khmelenina VN. 2001. Biology of extremophilic and extremotolerant methanotrophs [ J ]. Arch. Microbiol., 38:674~683. [83] Van Bodegom P. 1988. Methane emissions from rice paddies;experiments and modeling [J ]. Sci. New-Guinea., 16 (2): 87 ~96. [84] Vorholt JA, Chistoserdova L. 1999. Distribution of tetrahydromethanopterin -dependent enzymes in methylotrophic bacteria and phylogeny of methenyl tetrahydromethanopterin cydohydrolases[ J ].J. Bacteriol., 181: 5750~5757. [85] Whalen SC, Reeburgh WS. 1990. Rapid methane oxidation in a landfill cover soil [ J ]. Appl. Environ. Microbiol., 56: 3405 ~3411. [86] Whittenbury R, Phillips KC. 1970. Enrichment, isolation and some properties of methane u tilizing bacteria[J]. J. Gen. Microbial., 61:205~218. [87] Whittenbury R, Krieg NR, Archibod OW. 1984. Methylococcacea fam .nov[ A]. In: Krieg NR, eds. Bergey's Mannul of Systematic Bacteriology(Vol. 1) [ C]. Baltimore: The Williams Co., 256~262. [88] Whittenbury R. 1981. The interrelationship of autotrophy and methylotrophy as seen in Methylococcus capsulatus (Bath) [ A]. In:Dalton H, ed. Microbial Growth on C1 Compounds[ C]. London: Heyden,181~190. [89] Wise MG, McArthur JV. 2001. Methylosarcina fibrata gen. nov.,sp. nov. and Methylosarcina quisquiliarum sp. nov., novel type I methanotrophs[ J ]. Int. J. Syst. Evol. Microbiol., 51: 611~621. |
[1] | 魏莹,李倩,李阳,毛祝新,王宇超,岳明. 外来入侵植物反枝苋的研究进展 [J]. 生态学杂志, 2020, 39(1): 282-291. |
[2] | 鲁 萍,梁 慧,王宏燕,白雅梅,高凤杰,宋 戈,吴 岩,田秋阳. 外来入侵杂草反枝苋的研究进展 [J]. 生态学杂志, 2010, 29(08): 1662-1670. |
[3] | 杨德松;孟玲;李璐璐;李保平. 斑痣悬茧蜂寄主搜索中的学习行为 [J]. 生态学杂志, 2009, 28(10): 2026-2031. |
[4] | 曹文浩;严涛;刘永宏;程志强. 海洋生物防污作用机制及应用前景 [J]. 生态学杂志, 2009, 28(01): 146-151 . |
[5] | 徐正浩, 王一平. 外来入侵植物成灾的机制及防除对策 [J]. 生态学杂志, 2004, (3): 124-127. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||