欢迎访问《生态学杂志》官方网站,今天是 分享到:

生态学杂志 ›› 2025, Vol. 44 ›› Issue (5): 1722-1730.doi: 10.13292/j.1000-4890.202505.031

• 综合评述 • 上一篇    下一篇

深度学习算法在识别鉴定陆地节肢动物中的应用

庄晓濠1,张卫信2,刘胜杰1*
  

  1. 1中山大学生态学院, 广东深圳 518000; 2河南大学地理与环境学院, 黄河中下游数字地理技术教育部重点实验室, 河南开封 475004)

  • 出版日期:2025-06-10 发布日期:2025-05-15

Application of deep learning algorithms in identification and recognition of terrestrial arthropods.

ZHUANG Xiaohao1, ZHANG Weixin2, LIU Shengjie1*   

  1. (1School of Ecology, Sun Yat-sen University, Shenzhen 518000, China; 2Ministry of Education Key Laboratory of Geospatial Technology for Middle and Lower Yellow River Regions, College of Geography and Environmental Science, Henan University, Kaifeng 475004, Henan, China).

  • Online:2025-06-10 Published:2025-05-15

摘要: 陆地节肢动物是目前已知多样性最高的动物类群,对人类社会和自然生态系统发挥着重要的作用,但其多样性的调查过程一直面临着物种分类鉴定的巨大挑战。随着计算机视觉技术的发展,深度学习图像识别技术在动植物识别领域展现出了高效的分类潜力,日趋成为动物分类的新方法。然而,深度学习算法技术在陆地节肢动物识别鉴定中的发展却远远滞后于植物和脊椎动物。本文在阐述陆地节肢动物多样性和生态功能的基础上,介绍了深度学习图像识别技术的基本原理、常用类型及影响识别正确率的主要因素;同时,归纳总结了深度学习识别技术在土壤动物中的应用案例和存在问题,并基于此对其在节肢动物识别的未来研究重点作出展望,以期为计算机技术在陆地节肢动物,尤其是土壤动物,实现快速、准确、优化的识别鉴定提供参考。


关键词: 陆地节肢动物, 土壤动物, 图像识别, 深度学习

Abstract: Terrestrial arthropods are the most diverse animal taxa and play critical roles in human society and natural ecosystems. However, the taxonomic identification of terrestrial arthropods is a great challenge for diversity survey. With the development of computer vision technology, deep learning image recognition technology has shown a great potential for animal and plant recognition and classification and has increasingly become a new method for animal classification. Compared with plants and vertebrates, terrestrial arthropods were less explored the deep learning algorithm technology for the identification. Based on the diversity and ecological functions of terrestrial arthropods, we systematically introduce the principles, basic types and factors affecting the recognition accuracy of deep learning image recognition technology. Furthermore, we summarized the application cases and problems of deep learning recognition technology in the identification of soil arthropods. We prospected future research priorities in arthropod identification using deep learning, which outlines a milestone for achieving rapid, accurate and optimized identification of terrestrial arthropods, especially soil arthropods.


Key words: terrestrial arthropods, soil fauna, image recognition, deep learning