生态学杂志 ›› 2005, Vol. ›› Issue (6): 696-702.
龙寒, 向伟, 庄铁城, 林鹏
收稿日期:
2004-06-17
修回日期:
2004-08-16
出版日期:
2005-06-10
通讯作者:
林鹏
基金资助:
LONG Han, XIANG Wei, ZHUANG Tiecheng, LIN Peng
Received:
2004-06-17
Revised:
2004-08-16
Online:
2005-06-10
摘要: 随着工业的迅猛发展,工业废料源源不断地向海洋输出,污染日趋严重.人们在大力开发海洋微生物自净能力的同时,也对海岸线的绿色卫士--红树林给予了密切关注,积极展开红树林区微生物资源的开发利用.本文从红树林区微生物库的资源多样性、微生物在物质循环和能量流动中的作用、生理活性物质、代谢产物和污染治理等几个方面进行综述.
中图分类号:
龙寒, 向伟, 庄铁城, 林鹏. 红树林区微生物资源[J]. 生态学杂志, 2005, (6): 696-702.
LONG Han, XIANG Wei, ZHUANG Tiecheng, LIN Peng. Microorganism resource of mangrove ecosystems[J]. cje, 2005, (6): 696-702.
[1] 王军,林永成,吴雄宇,等.2001.从红树林内生真菌No.2533分离出新的异香豆素[J].中山大学学报(自然科学版),40(1):127~128. [2] 云南大学生物系.1980.植物生态学[M].北京:人民教育出版社,310~311. [3] 卢青.2000.植物耐盐性的分子生物学研究进展[J].生物学杂志,17(4):9~11. [4] 卢昌义,林鹏.1989.两种红树植物叶分解速率的研究[J].厦门大学学报(自然科学版),27(6):679~683. [5] 李厚金,林永成,刘晓红,等.2002.红树林内源真菌2524号的肽类成分(Ⅰ)[J].中山大学学报(自然科学版),41(1):110~112. [6] 朱峰,林永成,周世宁,等.2003.南海红树林内源真菌2534号代谢产物的研究[J].中山大学学报(自然科学版),42(1):52~54. [7] 刘爱民.2002.嗜盐菌的研究进展[J].安徽师范大学学报(自然科学版),25(2):181~193. [8] 庄铁诚,张瑜斌,林鹏.2000.红树林土壤微生物对甲胺磷的降解[J].应用环境生物学报,6(3):276~280. [9] 庄铁城,林鹏.1992.九龙江口秋茄红树林凋落叶自然分解与落叶腐解微生物的关系[J].植物生态学与地植物学学报,16(1):17~25. [10] 庄铁诚,林鹏.1995.红树林下土壤微生物对柴油的降解[J].厦门大学学报(自然科学版),34(3):442~446 [11] 林鹏.1990.红树林研究论文集(第1集)[C].厦门:厦门大学出版社,23~30. [12] 林鹏.1997.中国红树林生态系[M].北京:科学出版社,23~30. [13] 林鹏,尹毅,卢昌义.1992.广西红海榄群落的生物量和生产力[J].厦门大学学报(自然科学版),31(2):199~202. [14] 林鹏,卢昌义.1985.九龙江口红树林研究Ⅰ.秋茄群落的生物量和生产力[J].厦门大学学报(自然科学版),24(4):508~514. [15] 林鹏,卢昌义,王恭礼,等.1990.海莲红树林的生物量和生产力[J].厦门大学学报(自然科学版),29(2):209~213. [16] 林鹏,陈荣华.1991.红树林有机碎屑在河口生态系统中的作用[J].生态学杂志,10(2):45~48. [17] 张永光,李文均,姜成林,等.2002.嗜盐放线菌的研究进展[J].微生物学杂志,22(4):45~48. [18] 陈光英,刘晓红,温露,等.2003南海红树林内生真菌1893代谢产物研究[J].中山大学学报(自然科学版),42(1):49~54. [19] 杜宇野.1995.香菇研究进展[J].中国食用菌,14(4):9~11. [20] 吴雄宇,李曼玲,胡谷平,等.2002.南海红树林内生真菌2508代谢物研究[J].中山大学学报(自然科学版),42(3):34~36. [21] 吴雄宇,林永成,冯爽,等.2001.海南红树林内生真菌1356代谢产物的研究[J].热带海洋学报,20(4):80~86. [22] 杨智源,陈荣忠,杨丰,等.2001.短小芽孢杆菌葡聚糖内切酶基因的克隆及序列测定[J].微生物学报,40(1):76~81. [23] 周卫东,刘如林,邢邦华,等.1997.深层发酵香菇水溶性胞外多糖的生物学活性[J].菌物系统,16(3):220~207 [24] 周世宁,林永成,吴雄宇,等.2002.海洋真菌与细菌发酵物中的环二肽[J].微生物学通报,29(3):59~62. [25] 郑天凌,庄铁城,蔡立哲,等.2001.微生物在海洋污染环境中的生物修复作用[J].厦门大学学报(自然科学版),40(2):524~534. [26] 郑志成,周美英,姚炳新.1989.红树林根系放线菌的组成[J].厦门大学学报(自然科学版),28(3):306~310. [27] 姜广策,林永成,周世宁,等.2003.中国南海红树林内生真菌No.1403次级代谢物研究[J].中山大学学报(自然科学版),39(6):119. [28] 胡谷平,佘志刚,吴耀文,等.2002.南海海洋红树林内生真菌胞外多糖的研究[J].中山大学学报(自然科学版),41(1):121~122. [29] 胡承钰,王三英.2001.细菌胞外多糖复合应用的免疫增强作用[J].厦门大学学报(自然科学版),40(5):1129~1132. [30] 郑天凌,庄铁城,蔡立哲,等.2001.微生物在海洋污染环境中的生物修复作用[J].厦门大学学报(自然科学版),40(2):524~534. [31] 曾会才,郑服丛,贺春萍.2001.海南红树林生境中海疫霉种的分离与鉴定[J].菌物系统,20(3):310~315. [32] 郑忠辉,缪莉,黄耀坚,等.2002.红树植物内生真菌的抗肿瘤活性[J].厦门大学学报(自然科学版),42(4):513~516. [33] 潘道东,陈杰,韩正康,等.2002.胞外多糖Pullulan处理养猪场污水效果[J].畜牧与兽医,34(1):23~24. [34] 魏培莲.2002.微生物胞外多糖研究进展[J].浙江科技学院学报,14(2):8~12. [35] Alongi DM. 1988. Bacterial productivity and microbial biomass in tropical mangrove sediments[J]. Microb. Ecol., 15: 59 ~ 79. [36] Alongi DM. 1994. The role of bacteria in nutrient recycling in tropical mangrove and other coastal benthic ecosystems[J]. Hydrobiologia, 285:19 ~32. [37] Alongi DM, Boto KG, Tirendi F. 1989. Effect of exported mangrove litter on bacterial productivity and dissolved organic carbon fluxes in adjacent tropical nearshore sediments [J]. Mar. Ecol.Prog . Ser., 56:133~ 144. [38] Alongi DM, Christoffersen P, Tirendi F. 1993. The influence of forest type on microbial-nutrient relationships in tropical mangrove sediments[J]. J . Exp. Mar. Biol. Ecol. 171:201~223. [39] Bano N, Nisa MU, Khan N, et al. 1997. Significance of bacteria in the flux of organic matter in the tidal creeks of the mangrove ecosystem of the Indus river delta, Pakistan [J]. Mar. Ecol.Prog. Ser., 157:1~12. [40] Bashan Y, Puente ME, Myrold DD, et al. 1998. In vitro transfer of fixed nitrogen from diazotrophic filamentous cyanobacteria to black mangrove seedlings [J]. FEMS Microbiol. Ecol., 26 ( 3 ):165~ 170. [41] Benkacoker MO, Olurngin A. 1995. Waste drilling-fluid-utilising microorganisms in a tropical mangrove swamp oilfleld location [J]. Bioresour. Technol., 53(3) :211 ~215. [42] Benkacoker MO, Olumgin A. 1996. Effects of waste drilling fluid on bacterial isolates from a mangrove swamp oilfield in the Niger Delta of Nigeria[J]. Bioresour. Technol., 55(3): 175~179. [43] Boto KG, Alongi DM, Nott ALJ. 1989. Dissolved organic carbonbacteria interactions at sediment-water interface in a tropical mangrove system[J]. Mar. Ecol. Prog . Ser., 51:243~251. [44] Bremer GB. 1995. Lower marine fungi (Labyrinthulomycetes)and the decay of mangrove leaf litter[J]. Hydrobiologia, 295:89~95. [45] Chandrika V, Nair PVR, Khambhadkar LR. 1990. Distribution of phototrophic thionic bacteria in the anaerobic and microaerophilic strata of mangrove ecosystem of Cochin [J]. J. Mar.Biol. Assoc. India, 32:77~84. [46] Day JW Jr eds. 1989. Microbial ecology and organic detritus in estuaries[A]. In: Day JW Jr, eds. Estuarine Ecology [C]. New York:John Wiley & Sons, Inc., 257~ 308. [47] D' Croz L, Del Rosario J, Holness R. 1989. Degradation of red mangrove (Rhizophora mangle ) leaves in the bay of Panama [J]. Rev. Biol. Trop . 37:101~ 104. [48] Dhevendaran K. 1984.Photosynthetic bacteria in the marine environment at Porto-Novo [J]. Fish Technol. Soc. Cochin., 21:126~130. [49] Ellison AM, Farnsworth EJ, Twilley RR. 1996. Facultative mutualism between red mangrove and root-fouling sponges in Belizean mangal[J]. Ecology, 77(8) :2431~2444. [50] Fell JW, Master IM, Wiegert RG. 1984. Litter decomposition and nutrient enrichment[A]. In: The Mangrove Ecosystem: Research Methods (Monograph on oceanographic methodology, 8 )[C]. Paris: UNESCO, 239~251. [51] Findlay RH, Fell JW, Coleman NK, et al. 1986. Biochemical indicators of the role of fungi and thraustochytrids in mangrove detrital systems[A] . In: Moss ST, ed. The biology of marine fungi [C]. Cambridge: Cambridge University Press, 91 ~ 104. [52] Gina H, Patricia V, Yoav B. 2001. The role of sediment microorganisms in the productivity, conservation, and rehabilitation of mangrove ecosystems: An overview [J]. Biol. Fert. Soils, 33(4) :265~278 [53] Gotto JW, Taylor BF. 1976. N2 fixation associated with decaying leaves of the red mangrove ( Rhizophora mangle ) [J]. Appl .Environ. Microbiol . , 31:781 ~783. [54] Haronian D, Lewis A. 1991. Element of a unique bacteriorbodopsin neural network architecture[J]. Appl. Optics, 30 (5): 597 ~608. [55] Holguin G, Bashan Y, Mendoza-Salgado RA, et al. 1999. Microbiology of mangroves, forests in the frontier between land and sea [J]. Ciencia Desarrollo, 25(144) :26~35. [56] Hyde KD, Lee SY. 1995. Ecology of mangrove fungi and their role in nutrient cycling: What gaps occur in our knowledge?[J]. Hydrobiologia, 295( 1~3): 107~ 188. [57] Jetten MSM, Strous M, van de Pas-Schoonen KT, et al. 1998.The anaerobic oxidation of ammonium [J]. FEMS Microbiol.Rev., 22:421~ 437. [58] Jones EBG, Hyde KD. 1988. Methods for the study of marine fungi from the mangroves [A] . In: Agate AD, eds. Mangrove Microbiology: Role of Microorganism in Nutrient Cycling of Mangrove Soils and Waters [C]. Paris: UNDP/UNESCO, 9~27. [59] Kohlmeyer J, Bebout B, Volkmann KB. 1995. Decomposition of mangrove wood by marine fungi and teredinids in Belize [J].Mar. Ecol., 16: 27~ 39. [60] Lu CY, Lin P. 1990. Studies on liter fall and decomposition of Bruguier serangula (Lour) poir community on Hainan Island,China[J]. Bull. Mar. Sci., 47(1): 139~ 148. [61] Maltseva O, Oriel P. 1997. Monitoring of an alkaline 2, 4, 6-trichlorophenol-degrading enrichment culture by DNA fingerprinting methods and isolation of the responsible organism,Haloakaliphilic Nocardioides sp. strain M6 [J]. Appl. Environ.Microbiol., 63: 4145 ~ 4149. [62] Marty DG. 1985.Description of four souches methanogenes thermotolerantes isolees of interial or marine sediments[J]. C. R Acad. Sci. Ⅲ, 300: 545~ 548. [63] Matondkar SGP, Mahtani S, Mavinkurve S. 1981. Studies on mangrove swamps of Goa. I. Heterotrophic bacterial flora from mangrove swamps[J]. Mahasagar Bull. Nat. Inst. Oceanogr, 14: 325~ 327. [64] Miyasaka T, Koyama K, Itoh I. 1992. Science quantum conversion and image detection by a bacteriorhodopsin-based artificial photoreceptor[J]. Science, 255(1 ): 342~ 344. [65] Mohanraju R, Rajagopal BS, Daniels L, et al. 1997. Isolation and characterization of a methanogenic bacterium from mangrove sediments[J]. J. Mar. Biotechnol., 5:147 ~ 152. [66] Odum WE, Heald EJ. 1975. Mangrove forests and aquatic productivity[A]. In: Hasler AD, ed. Coupling of Land and Water Systems: Ecological Study No. 10 [C]. New York: SpringerVerlag, 129~ 136. [67] Poch GK, Gloer J. 1989. Helicascolides A and B: New lactones from the marine fungus Helicascus kanaloanus [J]. J. Natl.Prod., 52:257~ 260. [68] Poch GK, Gloer J. 1991. Auranticins A and B: Two new depsidones from a mangrove isolate of the fungus Preussia aurantiaca [J]. J. Natl. Prod., 54:213~ 217. [69] Raghukumar S, Sharma S, Raghukuma C, et al. 1994. Thraustochytrid and fungal component of marine detritus. 4. Laboratory studies on decomposition of leaves of the mangrove Rhizophora apiculata Blume[J]. J. Exp. Mar. Biol. Ecol., 183( 1 ): 113 ~131. [70] Raghukumar S, Sathepatak V, Sharma S, et al. 1995. Thraustochytrid and fungal component of marine detritus. 3. Field studies on decomposition of lesves of the mangrove Rhizopphora apiculata [J]. Aquat . Microb . Ecol., 9(2): 117~ 125. [71] Ramamurthy T, Raju RM, Natarajan R. 1990. Distribution and ecology of methanogenic bacteria in mangrove sediments of Pitchavaram, east coast of India[J]. Indian J. Mar. Sci., 19:269~ 273. [72] Rivera-Monroy VH, Day WJ, Twilley RR, et al. 1995a. Flux of nitrogen and sediment in a fringe mangrove forest in Terminos lagoon, Mexico[J]. Estuar. Coast. Shelf Sci., 40:139~ 160. [73] Rivera-Monroy VH, Twilley RR, Boustany RG, et al. 1995b. Direct denitrification in mangrove sediments in Términos Lagoon,Mexico[J]. Mar. Ecol. Prog. Ser., 126: 97~ 109. [74] Rivera-Monroy VH, Twilley RR. 1996. The relative role of denitrification and immobilization in the fate of inorganic nitrogen in mangrove sediments (Términos Lagoon, Mexico) [J]. Limnol.Oceanogr., 41: 284 ~ 296. [75] Robertson AI, Daniel PA. 1989. Decomposition and the annual flux of detritus from fallen timber in tropical mangrove forests [J]. Limnol. Oceanogr., 34: 640~ 646. [76] Saxena D, Loka-Bharathi PA, Chandramohan D. 1988. Sulfate reducing bacteria from mangrove swamps of Goa, central west coast of India[J]. Indian J. Mar. Sci., 17:153~ 157. [77] Schingrnann G, Milne L, Williams DR, et al. 1998. Cell wall active antifungal compounds produced by the marine fungus Hypoxylon oceanicum LL-15G256. Ⅱ. Isolation and structure determination[J].J. Antibiot., 51(3) :303~316. [78] Sengupta A, Chaudhuri S. 1990. Halotolerant Rhizobium strains from mangrove swamps of the Ganges River Delta[J]. Indian J.Microbiol., 30: 483 ~ 484. [79] Sengupta A, Chaudhuri S. 1991. Ecology of heterotrophic dinitrogen fixation in the rhizosphere of mangrove plant community at the Ganges River Estuary in India[J]. Oecologia, 87:560 ~564. [80] Shoreit AAM, El-Kady IA, Sayed WF. 1994. Isolation and identification of purple nonsulfur bacteria of mangal and non-mangal vegetation of Red Sea Coast, Egypt[J]. Limnologica, 24: 177 ~183. [81] Singh N, Steinke TD. 1992. Colonization of decomposing leaves of Bruguiera gymnorrhiza (Rhizopraceae) by fungi, and in vitro cellulolytic activity of the isolates[J]. South Afric. J. Bot., 58(6) :525~529. [82] Stanley SO, Boto KG, Alongi DM, et al. 1987. Composition and bacterial utilization of free amino acids in tropical mangrove sediments[J]. Mar. Chem, 22:13 ~30. [83] Tam NFY. 1998. Effects of wastewater discharge on microbial population and enzyme activites in mangrove soils [J]. Environ.Poll., 102(2~3) :233~242. [84] Tiedje JM. 1988. Ecology of denitrification and dissimilatory nitrate reduction to ammonium[A]. In: Zehnder AJB, ed. Biology of Anaerobic Microorganisms[C]. New York: Wiley, 179~244. [85] Toledo G, Bashan Y, Soeldner A. 1995. In vitro colonization and increase in nitrogen fixation of seedling roots of black mangrove inoculated by a filamentous cyanobacteria[J]. Can. Microbiol.,41 (11): 1012~ 1020. [86] van der Valk AG, Attiwill PM. 1984. Acetylene reduction in an Avicennia marina community in southern Australia[J]. Aust.J. Bot., 32:157~164. [87] Vazquez P, Holguin G, Puente ME, et al. 2000. Phosphate-solubilizing microorganisms associated with the rhizosphere of mangroves in a semiarid coastal lagoon [J]. Biol. Fertil. Soils, 30:460~468. [88] Vethanayagam RR. 1991. Purple photosynthetic bacteria from a tropical mangrove environment[J]. Mar. Biol., 110:161 ~ 163. [89] Vethanayagam RR, Krishnamurthy K. 1995. Studies on anoxygenic photosynthetic bacterium Rhodopseudomonas sp. from the tropical mangrove environment[J]. Indian J. Mar. Sci., 24:19~23. [90] Wu RY. 1993. Studies on the microbial ecology of Tansui Estuary[J]. Bot. Bull. Acad. Sin., 34 ( 1 ): 13~ 30. [91] Yoshihiro A, Naoya M, Kazuyoshi Y, et al. 2001. Initial fermentation of sea sludge using aerobic and thermophilic microorganisms in a mangrove soil[J]. Biores. Technol., 80: 83 ~ 85. [92] Zhuang T, Cheng LP. 1998. Soil microbial function of Kandelia candel mangrove: degradation of diesel oil[A]. In: Morton B,ed. The Marine Biology of the South China Sea[C]. Hongkong:Hongkong University Press, 389~395. [93] Zuberer DA, Silver WS. 1978. Biological dinitrogen fixation (Acetylene reduction) associated with Florida mangroves[J]. Appl. Environ. Microbiol., 35: 567~ 575. [94] Zuberer DA, Silver WS. 1979. N2-fixation (acetylene reduction)and the microbial colonization of mangrove roots[J]. New Phytol . , 82:467~471. |
[1] | 张斌, 吕玉峰, 李利, 冯美臣, 王超, 宋晓彦, 杨武德, 张美俊. 丛枝菌根真菌接种与磷添加对干旱胁迫燕麦土壤微生物生物量及酶活性的影响 [J]. 生态学杂志, 2024, 43(3): 644-655. |
[2] | 李义林, 李坤, 李建查, 潘志贤, 史亮涛, 刘小刚, 方海东, 岳学文. 有机肥和套种对干热区火龙果土壤微生物特性和产量、品质的影响 [J]. 生态学杂志, 2024, 43(3): 656-664. |
[3] | 周天祺, 孔维栋, 陈昊. 青藏高原草地土壤微生物研究进展 [J]. 生态学杂志, 2023, 42(4): 983-990. |
[4] | 于晶晶, 丛微, 丁易, 靳利晓, 张于光. 不同干扰方式下热带雨林土壤微生物群落自然恢复特征和构建机制 [J]. 生态学杂志, 2023, 42(3): 534-543. |
[5] | 高日平, 赵沛义, 刘小月, 张君, 李焕春, 黄洁, 景宇鹏, 段玉. 长期施肥对农牧交错带栗钙土土壤理化性质及生物学特性的影响 [J]. 生态学杂志, 2023, 42(3): 552-560. |
[6] | 陈佳, 赵璐峰, 戴然欣, 章涛杰, 唐建军, 胡亮亮, 陈欣. 稻鱼共生系统的土壤产甲烷和甲烷氧化微生物群落 [J]. 生态学杂志, 2023, 42(12): 2961-2971. |
[7] | 陈俊芳, 吴宪, 杨佳绒, 刘啸林, 刘宇. 全球气候变化下干旱及复水对植物和土壤微生物的影响:进展与展望 [J]. 生态学杂志, 2023, 42(12): 3038-3049. |
[8] | 高欣, 赵雪淞, 赵凤艳, 高传俊, 冯良山. 化肥有机替代对连作花生田土壤有机碳和微生物群落的影响 [J]. 生态学杂志, 2023, 42(1): 99-107. |
[9] | 代子雯, 方成, 车婷, 李娅娟, 胡锋, 李辉信, 徐莉. 次生富集型地质高背景土壤微生物群落结构多样性 [J]. 生态学杂志, 2022, 41(8): 1493-1500. |
[10] | 邱琛, 韩晓增, 陆欣春, 陈旭, 严君, 冯玉钿, 邹文秀. 玉米秸秆还田对黑土微生物群落功能多样性的影响 [J]. 生态学杂志, 2022, 41(2): 287-293. |
[11] | 龙永春, 马维伟, 宋良翠, 唐艳梅, 徐国荣, 常文华. 尕海湿地不同退化阶段土壤氮转化的关键微生物功能基因 [J]. 生态学杂志, 2022, 41(10): 1923-1931. |
[12] | 黄石德. 武夷山不同海拔土壤呼吸对变暖和变冷的响应 [J]. 生态学杂志, 2022, 41(1): 98-107. |
[13] | 蒋治岩, 邹青勤, 杨柳, 李汶倬, 张鹤东, 陈祥伟, 王秀伟. 典型黑土区不同菌根类型树种根系分泌速率及根际效应差异 [J]. 生态学杂志, 2021, 40(9): 2709-2718. |
[14] | 俞霞, 肖世豪, 李淑娟, 杨文亭, 黄国勤. 禾本科-豆科间作模式中作物产量和氮素利用的研究进展 [J]. 生态学杂志, 2021, 40(8): 2601-2609. |
[15] | 孔涛, 刘紫薇, 沈海鸥, 王振宇, 王东丽, 孙溥璠, 王翼翔. 辽西北沙地苹果大豆间作对土壤养分和微生物量分布的影响 [J]. 生态学杂志, 2021, 40(2): 340-351. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||