欢迎访问《生态学杂志》官方网站,今天是 分享到:

生态学杂志 ›› 2025, Vol. 44 ›› Issue (11): 3620-3628.doi: 10.13292/j.1000-4890.202511.004

• 研究报告 • 上一篇    下一篇

大气CO2浓度倍增和CdCl2胁迫对玉米生长及光合性能的影响

张佳睿1,莫晓燕1,宋炜2,李菲1,马超1,郝立华1,郑云普1,刘亮1*   

  1. 1河北工程大学水利水电学院, 河北邯郸 056038; 2河北省煤田地质局环境地质调查院, 石家庄 050091)

  • 出版日期:2025-11-10 发布日期:2025-11-10

Effects of elevated atmospheric CO2 concentration and CdCl2 stress on plant growth and photosynthetic performance of maize.

ZHANG Jiarui1, MO Xiaoyan1, SONG Wei2, LI Fei1, MA Chao1, HAO Lihua1, ZHENG Yunpu1, LIU Liang1*   

  1. (1School of Water Conservancy and Hydropower, Hebei University of Engineering, Handan, 056038, Hebei, China; 2Environmental Geological Survey Institute of Hebei Coalfield Geological Bureau, Shijiazhuang, 050091, China).

  • Online:2025-11-10 Published:2025-11-10

摘要: 为深入理解气候变化背景下玉米对大气CO2浓度升高和土壤镉污染的生理生态响应,本研究以“郑单958”玉米品种为试材,利用可精准控制CO2浓度的环境生长室,采用裂区实验方法探讨了不同CO2浓度和CdCl2胁迫对玉米气体交换参数、叶绿素含量、植株生物量、MDA含量及相关抗氧化酶活性的交互影响。结果表明:大气CO2浓度升高导致轻度和重度CdCl2胁迫下玉米的净光合速率(Pn)分别提高24%(P<0.001)和6%(P<0.05),但却降低了叶片的蒸腾速率(P<0.001)和气孔导度(P<0.001),从而导致水分利用效率均显著提高(P<0.001);轻度CdCl2胁迫显著提高了环境CO2浓度下的叶片生物量(P<0.001),但CO2浓度升高却降低根系生物量(P<0.05)和茎秆生物量(P<0.001);轻度与中度CdCl2胁迫导致不同CO2浓度下叶片MDA含量增多,同时POD活性上升,但CO2浓度升高却减少了MDA含量并导致POD活性下降;CO2浓度和CdCl2胁迫对叶片的Pn产生了显著的交互影响(P=0.002),大气CO2浓度升高可以提高轻度与中度CdCl2胁迫下玉米净光合速率和水分利用效率,且同时导致MDA含量的降低,从而增强植株抵抗CdCl2胁迫的能力。


关键词: 玉米(Zea may L.), 二氧化碳浓度, 镉胁迫, 气体交换参数, 生理过程

Abstract: To better understand the physiological and ecological responses of maize to elevated atmospheric CO2 concentration and soil cadmium pollution under future climate change, we investigated the interactive effects of different CO2 concentrations and CdCl2 stresses on leaf gas exchange, chlorophyll content, plant biomass as well as the MDA content and related antioxidant enzyme activities of the maize cultivar Zhengdan 958 in a split-plot experiment with environmental growth chambers. Elevated atmospheric CO2 concentration increased net photosynthetic rate (Pn) by 24% (P<0.001) and 6% (P<0.05) under mild and severe CdCl2 stress, respectively. Elevated atmospheric CO2 concentration decreased the transpiration rate and stomatal conductance of maize leaves (P<0.001), and thus increased the instantaneous water use efficiency (P<0.001). Mild CdCl2 stress significantly increased leaf biomass under ambient CO2 concentration (P<0.001), but elevated CO2 concentration decreased root biomass (P<0.05) and stem biomass of maize (P<0.001). Mild and moderate CdCl2 stress increased MDA content and POD activity in maize leaves under different CO2 concentrations, but elevated CO2 concentration reduced MDA content and POD activity. There were significantly interactive effects of CO2 concentration and CdCl2 stress on the Pn of maize plants (P=0.002). Our results suggested that elevated atmospheric CO2 concentration could increase net photosynthetic rate and instantaneous water use efficiency of maize under mild and moderate CdCl2 stress, but reduce the MDA content, thus improving the resistance of maize plants to CdCl2 stress.


Key words: maize (Zea may L.), CO2 concentration, Cd stress, gas exchange parameter, physiological process