欢迎访问《生态学杂志》官方网站,今天是 分享到:

生态学杂志 ›› 2022, Vol. 41 ›› Issue (5): 865-872.doi: 10.13292/j.1000-4890.202203.036

• 研究报告 • 上一篇    下一篇

CO2浓度升高对木荷幼苗光合特征的影响  

潘鸿,曹吉鑫,陈展,尚鹤*   

  1. (中国林业科学研究院森林生态环境与保护研究所, 国家林业和草原局森林生态环境重点实验室, 北京 100091)
  • 出版日期:2022-05-10 发布日期:2022-10-10

Effects of elevated CO2 concentration on photosynthetic characteristics of Schima superba seedlings.

PAN Hong, CAO Ji-xin, CHEN Zhan, SHANG He*   

  1. (Research Institute of Forest Ecology, Environment and Protection, Chinese Academy of Forestry, Key Laboratory of Forest Ecology and Environment of National Forestry and Grassland Administration, Beijing 100091, China).
  • Online:2022-05-10 Published:2022-10-10

摘要: IPCC(Intergovernmental Panel on Climate Change)报告预测,到2100年CO2浓度会出现430~480、580~720、720~1000和>1000 μmol·mol-1 4种不同情景,而目前同时探究所有CO2情景下植物响应情况的研究很少。本试验利用开顶式气室分别探究自然大气浓度(约400 μmol·mol-1)、550、750和1000 μmol·mol-1 4个CO2水平在生长季内对一年生木荷(Schima superba)幼苗气体交换参数、光合色素含量及生物量的影响。结果表明:熏气期间,550、750和1000 μmol·mol-1浓度下木荷幼苗净光合速率分别平均提升32.7%、66.7%、82.7%,胞间CO2浓度分别平均增加60.3%、126.2%、223.9%,而高浓度CO2对净光合速率的提升作用随着熏气时间延长,可能受叶片氮含量减少等非气孔因素的影响而降低;3个高浓度CO2处理下气孔导度和蒸腾速率在5—7月均增加,而1000 μmol·mol-1下气孔导度和蒸腾速率在8—10月逐渐下降到与自然大气无显著差别;5—10月1000和750 μmol·mol-1处理下叶绿素a、叶绿素b、类胡萝卜素含量和叶片N含量下降程度高于550 μmol·mol-1处理;熏气7个月后550和750 μmol·mol-1处理下木荷生物量分别提高79.2%和48.9%,而1000 μmol·mol-1处理下生物量减少。因此,高浓度CO2处理有助于木荷幼苗对大气中CO2进行固定及保存水分,从而增加木荷幼苗对干旱环境的适应性,同时550和750 μmol·mol-1浓度下有利于木荷生物量积累。

关键词: CO2浓度升高, OTC, 气体交换参数, 光合色素, 生物量

Abstract: Few studies have explored plant responses to all of CO2 scenarios including 430-480, 580-720, 720-1000 and more than 1000 μmol·mol-1 which will be by 2100 predicted by the IPCC (Intergovernmental Panel on Climate Change). In this study, one-year-old seedlings of Schima superba were exposed to ambient air and three elevated CO2 concentrations of 550, 750, 1000 μmol·mol-1 to investigate the changes of gas exchange parameters, photosynthetic pigment contents, and biomass by using Open Top Chambers during growing season. The results showed that net photosynthetic rate was increased by 32.7%, 66.7%, and 82.7%, and intercellular CO2 concentration was increased by 60.3%, 126.2%, 223.9% at 550, 750, and 1000 μmol·mol-1, respectively. The improvement in net photosynthetic rate under elevated CO2 concentrations decreased as affected by non-stomatal factors (such as decreased leaf N content) after longer fumigation time. Stomatal conductance and transpiration rate increased under all elevated CO2 concentrations from May to July, while there was no significant difference between 1000 μmol·mol-1 and ambient treatments from August to October. The reduction of the contents of chlorophyll a, chlorophyll b, carotenoids, and N in leaves under 750 and 1000 μmol·mol-1 was higher than that under 550 μmol·mol-1. Biomass under the treatments of 550 and 750 μmol·mol-1 increased by 79.2% and 48.9%, respectively, but decreased under 1000 μmol·mol-1. Therefore, it would be beneficial for S. superbato fix the increasing CO2 in atmosphere and preserve water in body under elevated CO2 concentrations. These benefits would increase the adaptability of S. superba seedlings to arid environments and enhance biomass accumulation under CO2 concentrations of 550 and 750 μmol·mol-1.

Key words: CO2 enrichment, OTC, gas exchange parameter, photosynthetic pigment, biomass.