欢迎访问《生态学杂志》官方网站,今天是 分享到:

生态学杂志 ›› 2024, Vol. 43 ›› Issue (1): 146-152.doi: 10.13292/j.1000-4890.202401.037

• 研究报告 • 上一篇    下一篇

小叶丁香花芽分化进程及内源激素的变化

许昕,刘佳奇,王宇含,宋璐,梁艳*   

  1. (齐齐哈尔大学生命科学与农林学院, 黑龙江齐齐哈尔 161006)
  • 出版日期:2024-01-10 发布日期:2024-01-10

The differentiation process of flower bud and the changes of endogenous hormones in Syringa microphylla.

XU Xin, LIU Jiaqi, WANG Yuhan, SONG Lu, LIANG Yan*   

  1. (College of Life Sciences and Agriculture and Forestry, Qiqihar University, Qiqihar 161006, Heilongjiang, China).
  • Online:2024-01-10 Published:2024-01-10

摘要: 观察小叶丁香花芽分化过程,明确花芽外部形态与内部解剖结构的对应关系,解析内源激素的动态变化,为小叶丁香开花调控和栽培管理提供科学依据。本研究以小叶丁香花芽为试验材料,外部形态观察和石蜡切片技术观测花芽分化过程及开花特性,酶联免疫法(ELISA)测定内源激素含量。解剖结构观察发现,小叶丁香春季开花的花芽分化始于5月下旬,至10月上旬结束,过程分为未分化期、总苞原基分化期、花序原基和小花原基分化期、萼片原基分化期、花瓣原基分化期、雄蕊原基分化期、雌蕊原基分化期7个时期,分化各时期存在重叠现象;吲哚乙酸(IAA)、脱落酸(ABA)、玉米素核苷(ZR)含量波动较大,分别呈现“降低-升高-降低”、“升高-降低-升高-降低”、“升高-降低”的变化趋势,赤霉素(GA3)含量维持在低水平且变化幅度不大;ABA/GA3峰值出现在总苞原基、萼片原基及花瓣原基分化期;IAA/GA3峰值出现在未分化期、花序原基和小花原基分化期、花瓣原基分化期;ABA/IAA在萼片原基分化期最高;ZR/GA3与ZR/IAA峰值出现在萼片原基与花瓣原基分化期;小叶丁香花芽分化各时期内部解剖结构与外部形态密切相关,高水平IAA、ABA、ABA/GA3和IAA/GA3有利于小叶丁香花芽分化的启动及早期花器官原基的分化,萼片原基与花瓣原基分化需要ZR、IAA、ABA的积累;花芽分化的起始、萼片原基与花瓣原基分化可能是小叶丁香花芽分化的关键时期,期间内源激素含量及激素间平衡均发挥重要的作用。


关键词: 小叶丁香, 花芽分化, 外部形态, 解剖结构, 内源激素

Abstract: Observing the process of flower bud differentiation, clarifying the correlation between morphology and anatomical structure of flower buds, and analyzing the dynamic changes of endogenous hormones can provide scientific basis for flowering regulation and cultivation management of Syringa microphylla. In this study, we examined flower bud differentiation and flowering characteristics of S. microphylla by external morphological observation and paraffin section technology, and measured the contents of endogenous hormones by enzyme-linked immunization (ELISA). According to the observation results of anatomical structure, flower bud differentiation of flowered S. microphylla in spring began in late May and ended in early October. The flower bud differentiation process could be divided into seven stages: undifferentiated stage, spathe primordium differentiation stage, inflorescence primordium and small floral primordium differentiation stage, sepal primordium differentiation stage, petal primordium differentiation stage, stamen primordium differentiation stage, and pistil primordium differentiation stage. There were overlaps across different differentiation stages. Indole acetic acid (IAA), abscisic acid (ABA) and zeatin riboside (ZR) changed greatly and showed a variation pattern of “down-up-down”, “up-down-up-down” and “up-down”, respectively. The content of gibberellin (GA3) remained stable at a low level with little variation  throughout the whole process. The highest value of ABA/GA3 appeared in the differentiation stages of spathe primordium, sepal primordium, and petal primordium. The highest value of IAA/GA3 appeared in the undifferentiated stage, the inflorescence primordium and small floral primordium differentiation stage, and the petal primordium differentiation stage. The highest value of ABA/IAA appeared in the sepal primordium differentiation stage, while the highest values of ZR/GA3 and ZR/IAA appeared in the differentiation stages of sepal primordium and petal primordium. The internal anatomical structure of flower bud differentiation was closely related to the external morphology. High levels of IAA, ABA, ABA/GA3 and IAA/GA3 were beneficial to the initiation of flower bud differentiation and the differentiation of early flower organ primordium, while the differentiation of sepal primordium and petal primordium required the accumulation of ZR, IAA, and ABA. The initiation stage of flower bud differentiation and the differentiation of sepal primordium and petal primordium may be the key periods of flower bud differentiation of S. microphylla, with an important role of the content of endogenous hormones and the balance between hormones.


Key words: Syringa microphylla, flower bud differentiation, external morphology, anatomical structure, endogenous hormone