欢迎访问《生态学杂志》官方网站,今天是 分享到:

生态学杂志 ›› 2022, Vol. 41 ›› Issue (8): 1535-1544.doi: 10.13292/j.1000-4890.202208.015

• 研究报告 • 上一篇    下一篇

湖南省植被净初级生产力时空动态及其与气候因素的关系#br#

闫妍1,覃金华1,房磊2*,胡宝清1,伊坤朋3,陈龙池2,4


  

  1. 1广西地表过程与智能模拟重点实验室, 南宁师范大学, 南宁 530001; 2中国科学院森林生态与管理重点实验室, 中国科学院沈阳应用生态研究所, 沈阳 110016; 3城市与区域生态国家重点实验室, 中国科学院生态环境研究中心, 北京 100085; 4中国科学院会同森林生态实验站, 沈阳 110016)

  • 出版日期:2022-08-10 发布日期:2022-08-15

Spatiotemporal dynamics of vegetation net primary productivity and its relationships with climatic factors in Hunan Province.

YAN Yan1, QIN Jin-hua1, FANG Lei2*, HU Bao-qing1, YI Kun-peng3, CHEN Long-chi2,4   

  1. (1Guangxi Key Laboratory of Earth Surface Processes and Intelligent Simulation, Nanning Normal University, Nanning 530001, China; 2Key Laboratory of Forest Ecology and Management, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, China; 3State Key Laboratory of Urban and Regional Ecology, Research Centre for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; 4Huitong Experimental Station of Forest Ecology of Chinese Academy of Sciences, Shenyang 110016, China).

  • Online:2022-08-10 Published:2022-08-15

摘要: 植被净初级生产力(NPP)是评估生态系统响应气候变化与人类活动的重要指示因子。本文基于CASA模型,利用MODIS月度植被指数产品、TerraClimate气候数据集、ChinaCover2010土地覆被类型等数据,研制了2000—2019年湖南省月度NPP数据集(250 m),采用Mann-Kendall检验法、多元回归分析等方法探讨了湖南省主要流域的NPP变化趋势及其与气候因素之间的关系。结果表明:2000—2019年湖南省植被NPP均值为566.92 g C·m-2·a-1,湘江流域(上游)年均NPP最高,为625.28 g C·m-2·a-1,洞庭湖环湖区年均NPP较低,为492.11 g C·m-2·a-1;流域间NPP年际波动趋势相似,2008年以前呈增加趋势,2008—2009年呈现短暂剧烈下降随后缓慢回升趋势;约38%陆域面积的NPP呈现单调增加趋势,约10%陆域面积的NPP呈现单调减少趋势,主要分布于洞庭湖环湖区与“长-株-潭”城市群。气候因素对月均植被NPP的相对重要性在不同流域存在差异,相对重要性排序依次为水汽压(0.331)、温度(0.318)、太阳辐射(0.299)、降水(0.062),其中降水与NPP之间并未表现出显著相关关系。本研究显示,极端气候事件(如雪灾、水灾等)与人类活动(如土地开发、退田还湖等)造成了湖南省植被NPP的降低,但在生态系统管理实践中需要区分NPP变化背后的生态效应差异。


关键词: CASA模型, 植被净初级生产力, Mann-Kendall检验, 阈值效应, 湖南省

Abstract: Vegetation net primary productivity (NPP) is an important indicator for evaluating the responses of ecosystems to climate change and anthropogenic activities. The monthly NPP datasets (250 m resolution) of Hunan Province from 2000 to 2019 were generated through combining the Carnegie-Ames-Stanford Approach (CASA) model and a series of spatial datasets such as the MODIS monthly vegetation index product, TerraClimate datasets, and land-cover map (i.e., ChinaCover2010). The NPP trend and its relationships with climatic factors at the watershed scale were investigated using the Mann-Kendall test and multiple regression model. The results showed that annual mean NPP of Hunan Province was 566.92 g C·m-2·a-1 between 2000 and 2019. The headwater of Xiangjiang River basin had the highest value of annual mean NPP of 625.28 g C·m-2·a-1, while the Dongting Lake basin had the lowest NPP value of 492.11 g C·m-2·a-1. The annual NPP fluctuations of the five watersheds were generally similar, with an increasing trend before 2008 and then a shortly but dramatically decreasing trend in 2009 with slowly NPP recovery since 2010. About 38% area exhibited a monotonic increasing trend and about 10% area a monotonic decreasing trend, which was mainly distributed in the Dongting Lake basin and the “Changsha-Zhuzhou-Xiangtan” urban agglomeration, respectively. The relative importance of the meteorological factors varied among the five watersheds, with an overall ranking of vapor pressure (0.331), temperature (0.318), solar radiation (0.299), and precipitation (0.062). The correlation between precipitation and NPP was not statistically significant. Our results demonstrated that extreme climate events (e.g., snow disasters, floods) and anthropogenic activities (e.g., land development, returning cropland to the lake) decreased vegetation NPP of Hunan Province. It is necessary to distinguish the differences in the ecological effects of such NPP changes when managing ecosystems in practice.


Key words: CASA model, net primary productivity, Mann-Kendall test, threshold effect, Hunan Province.