欢迎访问《生态学杂志》官方网站,今天是 分享到:

生态学杂志 ›› 2022, Vol. 41 ›› Issue (7): 1324-1333.doi: 10.13292/j.1000-4890.202207.033

• 黄河流域生态保护与修复专栏 • 上一篇    下一篇

近30年黄河三角洲吸附态氮污染量化分析

陈默1,牟乃夏1,王有霄2,3,王赛4,刘高焕2,3,5,赵忠贺2*   

  1. 1山东科技大学测绘与空间信息学院, 山东青岛 266590;2中国科学院地理科学与自然资源研究所, 北京 100101;3中国科学院大学, 北京 100049; 4北京航天世景信息技术有限公司, 北京 100089; 5江苏省地理信息资源开发与利用协同创新中心, 南京 210023)
  • 出版日期:2022-07-10 发布日期:2022-07-08

Quantitative analysis of the adsorbed nitrogen pollution of the Yellow River Delta in the past three decades.

CHEN Mo1, MU Nai-xia1, WANG You-xiao2,3, WANG Sai4, LIU Gao-huan2,3,5, ZHAO Zhong-he2*   

  1. (1College of Geodesy and Geomatics, Shandong University of Science and Technology, Qingdao 266590, Shandong, China; 2Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China;3University of Chinese Academy of Sciences, Beijing 100049, China; 4Space Will Info. Co., Ltd., Beijing 100089, China; 5Jiangsu Center for Collaborative Innovation in Geographical Information Resource Development and Application, Nanjing 210023, China).
  • Online:2022-07-10 Published:2022-07-08

摘要: 为了解黄河三角洲非点源污染中吸附态氮的污染负荷,本研究以黄河三角洲为研究区,从1991—2020年每5年为一期,基于中国通用土壤侵蚀方程与污染负荷模型,结合降水、土地利用、土壤表层氮含量等数据,估算得到研究区各期的土壤侵蚀与吸附态氮污染负荷。结果表明:从1991—2020年,黄河三角洲的平均吸附态氮负荷模数从701.94 kg·km-2·a-1减少到361.51 kg·km-2·a-1,污染负荷整体呈现跌宕下降;1995年研究区内吸附态氮污染负荷计算结果大于0,即视为存在污染负荷的面积为1317.29 km2,占研究区总面积的45.1%,到2020年,存在污染负荷的面积降低至765.31 km2,占研究区的26.2%;降雨、耕地面积变化与吸附态氮污染负荷具有显著正相关关系,是污染负荷改变的重要驱动力,符合研究区内非点源污染高负荷所在区域的特征。

关键词: 非点源污染, 吸附态氮负荷, 土壤侵蚀, 黄河三角洲

Abstract: To clarify the pollution load of adsorbed nitrogen of the Yellow River Delta in the nonpoint source pollution, we estimated soil erosion and adsorbed nitrogen pollution loads every five years from 1991 to 2020 in Yellow River Delta, based on the Chinese Soil Loss Equation and pollution load model, combined with the data of precipitation, land use, and nitrogen content in soil surface. The results showed that from 1991 to 2020, the average adsorbed nitrogen load modulus in the Yellow River Delta decreased from 701.94 to 361.51 kg·km-2·a-1, and the overall pollution load presented the fluctuation to descend. The result of the adsorbed nitrogen pollution load in 1995 was greater than 0. The area having a pollution load was 1317.29 km2, accounting for 45.1% of the study area. By 2020, the area with pollution loads decreased to 765.31 km2, accounting for 26.2% of the study area. Rainfall and changes of cultivated land area had a significant positive correlation with the adsorbed nitrogen pollution load, and were important driving forces for the changes of pollution load, consistent with the characteristics of the area where the high non-point source pollution load was located in the study area.

Key words: non-point source pollution, adsorbed nitrogen load, soil erosion, Yellow River Delta.