[1] 苏德纯,黄焕忠,张福锁.2002.印度芥菜对土壤中难溶态Cd的吸收及转化[J].中国环境科学,22(4):342~345. [2] 沈宏,严小龙.2000.根分泌物研究现状及其在农业与环境领域的应用[J].农村生态环境,16(3):51~54. [3] 吴龙华,骆永明,卢蓉辉,等.2000.铜污染土壤修复的有机调控研究.Ⅱ.根际土壤铜的有机活化效应[J].土壤,2:67~70. [4] 吴龙华,骆永明.2001.铜污染旱地红壤的络合诱导植物修复作用[J].应用生态学报,12(3):435~438. [5] 吴胜春,骆永明,蒋先军,等.2000.重金属污染的植物修复研究Ⅱ.金属富集植物Brassica juncea根际土壤中微生物数量的变化[J].土壤,2:75~78. [6] 杨仁斌,曾清如,周细红,等.2000.植物根系分泌物对铅锌尾矿污染土壤中重金属的活化效应[J].农业环境保护,19(3):152~155. [7] 骆永明.2000.强化植物修复的螯合诱导技术及其环境风险[J].土壤,2:57~61. [8] Alloway BJ. 1995. Heavy Metal in Soils (2nd edition) [M]. London UK: Blackie. [9] AlNajar H, Schulz R, Romheldtl V. 2003. Plant availability of thallium in the rhizosphere of hyperaccumulator plants: a key factor for assessment of phytoextraction [J]. Plant Soil, 249: 97~105. [10] Assuncao AGL, Martins PDC, Defolter S, et al. 2001. Elevated expression of metal transporter genes in three accessions of the metal hyperaccumulator Thlaspi caerulescens [J]. Plant Cell Environ., 24:217~226. [11] Bernal MP, McGrath SP. 1994b. Effect of pH and heavy metal concentration in solution culture on the proton release, growth and elemental composition of Alyssum murale and Raphanus sativus L. [J]. Plant Soil, 166:83~92. [12] Bernal MP, McGrath SP, Miller AJ, et al. 1994a. Comparison of the chemical changes in the rhizosphere of the nickel hyperaccumulator Alyssum murale with the nonaccumulator Raphanus sativus[J]. Plant Soil, 164:251~259. [13] Blaylock MJ, Salt DE, Dushenkov S, et al. 1997. Enhanced accumulation of lead in Indian Mustard by soil-applied chelating agents[J]. Environ. Sci. Technol., 31:860~865. [14] Boyd RS, Shaw JJ, Martens SN. 1994. Nickel hyperaccumulation defends Streptanthus polygaloides (Brassicaceae) against pathogens[J]. Amer. J. Bot., 81:294~300. [15] Brown SL, Chaney RL, Angle JS, et al. 1994. Phytoremediation potential of Thlaspi caerulescens and bladder campion for zincand cadmium-contaminated soil [J]. J . Environ. Qual., 23:1151~1157. [16] Brown SL, Chaney RL, Angle JS, et al. 1995. Zinc and cadmium uptake by hyperaccumulator Thlaspi caerulescens and metal tolerant Silene vulgaris grown on sludge-amended soils[J] .J. SoilSci. Soc. Am., 59:125~ 133. [17] Cakmak I, Ozturk L, Karanlik S, et al. 1996. Zinc-efficient wild grasses enhance the release of phytosiderophores under Zn deficiency[J]. J. Plant. Nutr., 19: 551~ 563. [18] Carlos G, Itzia A. 2001. Phytoextration: a costeffective plantbased technology for the removal of metals from the environment[J]. Bioresource Technol., 77: 229~ 236. [19] Chaney RL. 1983. Plant uptake of inorganic waste constituents.Land treatment of harzardous wastes[A]. In: Parr JF, ed. Noyes Data Corporation[C]. New Work: Park Ridge, 50~76. [20] Cieslinski G, VanRees KCJ, Szmigielska AM, et al. 1998. Lowmolecular weight organic acids in rhizosphere soils of durum wheat and their effect on cadmium bioaccumulation [J]. Plant Soil, 203:109~17. [21] Delorme TA, Gagliardi JV, Angle IS, et al. 2001. Influence of the zinc hyperaccumulator Thlaspi caerulescens J. & C. Presl.and the nonmetal accumulator Thifolium pretense L. on soil microbial populations[J]. Can .J. Microbiol., 47(8) :773~776. [22] Entry JA, Rygiewicz PT, Emmingham WH. 1994.90Sr uptake by Pinus ponderosa and Pinus radiate seedlings inoculated with ectomycorrhizal fungi[J]. Environ. Pollut., 86: 201~206. [23] Haselwandter K, Bowen GD. 1996. Mycorrhizal relations in trees for agroforesty and land rehabilitation[J]. For. Ecol. Manage.,81:1~17. [24] Huang JW, Chen J, Berti WR. 1997. Phytoremediation of leadcontaminated soil: role of synthetic chelates in lead phytoextraction[J]. Enriron . Sci. Tech., 31(3) :800~805. [25] Huang JW. 1998. Phytoremediation of uraniu-mcontaminated soils:role of organic acids in triggering uranium hyperaccumulation in plants[J]. Environ. Sci. Technol., 32: 2004 ~ 2008. [26] Knight B, Zhao FJ, McGrath SP, et al. 1997. Zinc and cadmium uptake by the hyperaccumulator Thlaspi caerulescens in contaminated soils and its effects on the concentration and chemical speciation of metals in soil solution[J]. Plant Soil, 197:71~78. [27] Kramer U, CotterHowells JD, Charnock JM, et al. 1996. Free histidine as a metal chelator in plants that accumulate nickel[J].Nature, 379: 635 ~ 638. [28] Krishnamurti GSR, Cieslinski G, Huang PM, et al. 1997. Kinetics of cadmium release from soils as influenced by organic acids:implication in cadmium availability [J]. J. Environ. Qual., 26:271 ~ 277. [29] Lombi E, Tearll KL, Howarth JR, et al. 2002. Influence of iron status on cadmium and zinc uptake by different ecotypes of the hyperaccumulator Thlaspi caerulescens [J]. Plant Physiol.,128:1359~1367 [30] Luo YM, Christie P, Baker AJM. 2000. Soil solution Zn and pH dynamics in nonrhizosphere soil and in the rhizosphere of Thlaspi caerulescens grown in a Zn/Cd contaminated soil[J].Chemosphere, 41:161 ~ 164. [31] Ma JF, Zheng SJ, Hiradate S, et al. 1997. Detoxifying aluminum with buckwheat[J]. Nature, 390: 569~ 570. [32] Marschner H. 1995. Mineral Nutrition of Higher Plants(2ed.)[M]. San Diego. CA. USA: Academic Press. [33] McGrath SP, Shen ZG, Zhao FJ. 1997. Heavy metal uptake and chemical changes in the rhizosphere of Thlaspi caerulescens and Thlaspi ochroleucum grown in contaminated soils [J]. Plant Soil, 188:153~159. [34] McGrath SP, Zhao FJ, Lombi E. 2001. Plant and rhizosphere processes involved in phytoremediation of metal-contaminated soils[J]. Plant Soil, 232: 207~ 214. [35] McMrath SP, Dunham SJ, Correll RL. 2000. Potential for phytoextraction of zinc and cadmium from soils using hyperaccumulator plants[M]. In: Terry N, eds. Phytoremediation of Contaminated Soil and Water [C]. Boca Raton, FL, USA:CRC. Press.109 ~ 128. [36] Pellet DM, Grunes DL, Kochian LV. 1995. Organic acids exudation as an aluminum tolerance mechanism in maize [J]. Planta,196:788~ 795. [37] Pence NS, Larsen PB, Ebbs S, et al. 2000. The molecular physiology of heavy metal transport in the Zn/Cd hyperaccumulator Thlaspi caerulescens [J]. Proc. Natl. Acad. Sci. USA, 97:4956~ 4960. [38] Romheld V. 1991. The role of phytosiderphores in acquisition of iron and other micronutrinets in graminaceous species: an ecological approach[J]. Plant Soil, 130:127 ~ 134. [39] Salt DE, Kato N, Kromer U, et al. 2000. The role of root exudates in nickel hyperaccumulation and tolerance in accumulator and nonaccumulator species of Thlaspi [A]. In: Terry N, eds.Phytoremediation of Contaminated Soil and Water[C]. Boca Raton. FL. USA.: Lewis Publisher, 189~200. [40] Schwartz C, Morel JL, Saumier S, et al. 1999. Root development of the Zinc-hyperaccumulator plant Thlaspi caerulescens as affected by metal origin, content and localization in soil[J]. Plant Soil, 208:103 ~ 115. [41] Sharma BD. 1998.Fungal association with isoetes species[J].Amer.Fern. J., 88:138 ~ 142. [42] Stanhope KG, Young SD, Hutchinson J J, et al. 2000. Use of isotopic dilution techniques to assess the mobilization of nonlabile Cd by chelating agents in phytoremediation [J]. Environ. Sci.Technol., 34:4123~4127. [43] Stomp AM, Han KH, Wilbert S, et al. 1994. Genetic strategies for enhancing phytoremediation[J]. Ann. NY Acad. Sci., 721:481 ~ 492. [44] Susarla S, Medina VF, McCutcheon SC. 2002. Phytoremediation: an ecological solution to organic chemical contamination[J]. Ecol. Eng., 18:647~658. [45] Vassil AD, Kapulnik Y, Raskin I, et al. 1998. The role of EDTA in lead transport and accumulation by Indian Mustard[J]. Plant Physiol., 117:447~453. [46] Wallace A. 1980. Trace metal placement in soil on metal uptake and phytotoxicity[J]. J. Plant Nutr., 2: 35 ~ 38. [47] Welch RM. 1993. Induction of iron(Ⅲ) and Cu(Ⅱ)reduction in pea roots by Fe and Cu status: does the root-cell plasmalemma Fe( Ⅲ )chelate reductase perform a general role in regulating cation uptake? [J]. Planta, 190: 555~ 561. [48] Wenzel WW, Bunkowski M, Puschenreiter M, et al. 2003. Rhizosphere characteristic of indigenously growing nickel hyperaccumulator and excludor plants on serpentine soil[J]. Environ. Pollut., 123:131 ~ 138. [49] Wenzel WW. 1999. Manipulating rhizosphere chemistry to control metal and organic contaminant availability and implication to phytoremediation[A]. In: Second International Conference on Contaminants in the Soil Environment in the Australasia PacificRegion(abstract) [C]. New Delhi: India, 105~106. [50] Whiting SN, Leake JR, McGrath SP, et al. 2000. Positive responses to Zn and Cd by roots of the Zn and Cd hyperaccumulator Thlaspi caerulescens[J]. New Phytol., 145:199~210. [51] Whiting SN, Leake JR, McGrath SP, et al. 2001a. Zinc accumulation by Thlaspi caerulescens from soils with different Zn availability: a pot study[J]. Plant Soil, 236:11 ~ 18. [52] Whiting SN, Leake JR, McGrath SP, et al. 2001b. Assessment of Zn mobilization in the rhizosphere of Thlaspi caerulescens by bioassay with nonaccumulator plants and soil extraction [J].Plant Soil, 237:147~156. [53] Whiting SN, De Souza MP, Terry N. 2001. Rhizosphere bacteria mobilize Zn for hyperaccumulation by Thlaspi caerulescens [J].Environ. Sci. Technol ., 35: 3144~ 3150. [54] Yrasad MNV, Hagemeyer J. 1999. Biogeochemical process in the rhizosphere: role in phytoremediation of metalpolluted sites[A].Heavy Metal Stress in Plants from Molecules to Ecosystem[C].Berlin: Springer, 273~ 303. [55] Zhao FJ, Hamon RE, McLanghlin MJ. 2001. Root exduates of the hyperaccumulator Thlaspi caerulescens do not enhance metal mobilization [J]. New Phytol., 105: 613~ 620. [56] Zheng SJ, Ma JF, Matsumoto H. 1998. High aluminum tolerance in buckwheat Ⅰ . aluminum induced specific secretion of oxalic acid from root tips[J]. Physiol. Plant, 7: 745~751. |