欢迎访问《生态学杂志》官方网站,今天是 分享到:

生态学杂志 ›› 2025, Vol. 44 ›› Issue (5): 1662-1670.doi: 10.13292/j.1000-4890.202505.039

• 研究报告 • 上一篇    下一篇

基于空间模拟退火算法的NO2空气监测站点优化:以闽西南城市群为例

邱月1,2,祝鹏飞1,2,苏颖1,2,Abiot Molla1,2,任引1,2*
  

  1. 1中国科学院城市环境研究所城市环境与健康重点实验室, 福建厦门 361021; 2中国科学院大学, 北京 100049)
  • 出版日期:2025-06-10 发布日期:2025-05-14

Optimization of NO2 air monitoring stations based on spatial simulated annealing algorithm: A case study of the southwest Fujian urban agglomeration.#br#
#br#

QIU Yue1,2, ZHU Pengfei1,2, SU Ying1,2, Abiot Molla1,2, REN Yin1,2*   

  1. (1Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, Fujian, China; 2University of Chinese Academy of Sciences, Beijing 100049, China).

  • Online:2025-06-10 Published:2025-05-14

摘要: 大气污染评价是城市规划与控制中重要组成部分,关系到人类健康和社会发展。合理布设空气质量监测站对区域空气质量分布的预测至关重要。本研究旨在评估空气监测点的最小样本容量,以表征空气NO2的最优预测精度,并为预测模型建立可靠的输入。本文以中国闽西南地区地面NO2监测站点优化为例,设计了基于空间模拟退火算法的空气质量监测网络空间优化的方法框架。基于空间模拟退火算法以最小克里金方差(MKV)为目标,改善监测站点的布局,提高空气污染监测的精度和效果。在优化过程中,使用了扰动算法对监测站点布局进行改变。并采用MKV进行评估(不考虑财务预算限制)寻求优化效率最高的采样数量。对地面NO2空气污染监测站点的空间布局进行优化,通过优化,我们发现在增加160个监测站点后,NO2的MKV从0.09 μg·m-3降低至0.02 μg·m-3,预测精度提升了71.46%。这种优化可能改善监测系统的覆盖范围和采样密度,提高监测数据的准确性和可靠性。这对于及时识别和应对污染源、监测空气质量趋势以及制定环境政策至关重要。此外,该方法还有可能应用于其他形式的环境污染(如水、土壤和噪音)监测,这对今后空气监测站点的布设及管理思路提供了参考。


关键词: 监测站点布局, 空间模拟退火算法, 经验贝叶斯克里金插值法, NO2监测, 布局优化, 点位优化

Abstract: Air quality evaluation is a crucial component of urban planning and control, closely related to human health and society development. The rational deployment of air quality monitoring stations is vital for predicting the spatial variations of air quality. This study aimed to evaluate the minimum sample size of air monitoring points to represent the optimal prediction accuracy of air NO2 and to establish reliable inputs for predictive models. We designed a methodological framework for spatial optimization of air quality monitoring networks based on spatial simulated annealing algorithm, with the ground-level NO2 monitoring stations in the southwest Fujian of China as an example. The layout of monitoring stations was improved based on the spatial simulated annealing algorithm with the minimum Kriging variance, enhancing the precision and effectiveness of air pollution monitoring. During the optimization process, a perturbation algorithm was used to change the layout of monitoring stations. The minimum Kriging variance (MKV) was employed for evaluation (without considering the total financial budget limit), seeking the highest optimization efficiency in sampling quantity. By optimizing the spatial layout of ground-level NO2 air pollution monitoring stations, we found that after adding 160 monitoring stations, the MKV of NO2 decreased from 0.09 μg·m-3 to 0.02 μg·m-3, and the prediction accuracy was increased by 71.46%. This optimization is likely to improve the coverage and sampling density of the monitoring system, enhancing the accuracy and reliability of monitoring data. This is crucial for timely identification and response to pollution sources, monitoring air quality trends, and formulating environmental policies. Moreover, this method could potentially be applied to monitor other forms of pollution (water, soil, and noise). This study provides a reference for the future optimization of air monitoring station deployment and management.


Key words: monitoring station location selection, spatial simulated annealing algorithm, empirical Bayes Kriging, NO2 monitoring, layout optimization, point optimization