欢迎访问《生态学杂志》官方网站,今天是 分享到:

生态学杂志 ›› 2025, Vol. 44 ›› Issue (4): 1191-1201.doi: 10.13292/j.1000-4890.202504.033

• 研究报告 • 上一篇    下一篇

禁捕初期太湖浮游植物的群落结构特征及其环境影响因子

盛漂1,2,阳敏1,2,陈文凯3,刘香江3,辛未1,陈宇顺1,2*
  

  1. (1中国科学院水生生物研究所, 淡水生态与生物技术国家重点实验室, 武汉 430072; 2中国科学院大学, 北京 100049; 3华中农业大学水产学院, 武汉 430072)

  • 出版日期:2025-04-10 发布日期:2025-04-11

Characteristics of phytoplankton community structure and its environmental influencing factors in Taihu Lake during the early stage of fishing ban.#br#

SHENG Piao1,2, YANG Min1,2, CHEN Wenkai3, LIU Xiangjiang3, XIN Wei1, CHEN Yushun1,2*   

  1. (1State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; 2University of Chinese Academy of Sciences, Beijing 100049, China; 3College of Fisheries, Huazhong Agricultural University, Wuhan 430072, China).

  • Online:2025-04-10 Published:2025-04-11

摘要: 为探究禁捕初期太湖浮游植物群落结构的时空变化特征及其关键环境影响因子,于2020年5月(春季)、8月(夏季)、11月(秋季)、12月(冬季)对太湖18个采样点的水环境因子和浮游植物群落结构进行调查。共鉴定到太湖浮游植物7门67属130种,种类组成以绿藻门(65种)最多,硅藻门(30种)、蓝藻门(20种)次之。太湖全湖全年的优势种包括微囊藻(Microcystis sp.)、长孢藻(Dolichospermum sp.)和伪鱼腥藻(Pseudanabaena sp.)。不同季节与区域的优势种存在差异,但均以微囊藻(Microcystis sp.)的优势度最大。太湖浮游植物密度、生物量具有明显的季节差异性,空间上差异不显著。夏季的平均密度与生物量最高,分别为(1.14±1.04)×108 cells·L-1、14.67±9.64 mg·L-1,均显著高于其他3个季度。秋季的密度最低,为(0.32±0.55)×108 cells·L-1;冬季的生物量最低,为2.49±4.35 mg·L-1。冗余分析结果表明,水温、水深、pH、电导率、溶解氧、浊度、总氮、化学需氧量、亚硝态氮共9项水质指标为显著影响太湖浮游植物群落结构的环境因子。基于优势种、多样性指数与综合营养状态指数的评价结果,太湖全年的水质为中度至重度污染。本研究可为太湖浮游植物群落结构的现状分析及太湖水生态系统的健康评价提供科学依据,同时为太湖禁捕退捕实施对湖泊生态系统的影响提供基础数据支撑。


关键词: 浮游植物, 禁捕, 时空特征, 环境因子, 水质评价

Abstract: To clarify the spatial and temporal variations of phytoplankton community structure of Taihu Lake during the early stage of the fishing ban and their key environmental driving factors, we investigated water environmental factors and phytoplankton community structure at 18 sampling sites in Taihu Lake in May (spring), August (summer), November (autumn) and December (winter) of 2020. A total of 130 phytoplankton species from 7 phyla and 67 genera were identified. Chlorophyta (65 species) was the dominant group, followed by Bacillariophyta (30 species) and Cyanophyta (20 species). The dominant species throughout the year included Microcystis sp., Dolichospermum sp., and Pseudanabaena sp. Dominant species differed across seasons and regions, but the dominance of Microcystis sp. was the greatest. There was significant seasonal variation in phytoplankton density and biomass, and no spatial difference. The mean density and biomass were the highest in summer, with (1.14±1.04)×108 cells·L-1 and 14.67±9.64 mg·L-1, respectively. Phytoplankton density was the lowest in autumn, with (0.32±0.55)×108 cells·L-1, while the lowest biomass of 2.49±4.35 mg·L-1 in winter. Redundancy analysis showed that nine water quality indicators, including water temperature, total nitrogen, turbidity, chemical oxygen demand, nitrite, water depth, pH, conductivity and dissolved oxygen, significantly influenced the structure of phytoplankton community. Based on the evaluation results of dominant species, diversity index and comprehensive trophic state index, the water quality of Taihu Lake was between moderately and heavily polluted throughout the year. The study can provide scientific information for understanding the current status of phytoplankton community structure and the evaluation of ecosystem health of the Taihu Lake. It also provides basic data support for the impact of the implementation of fishing ban on lake ecosystem.


Key words: phytoplankton, fishing ban, spatial and temporal characteristics, environmental factor, water quality assessment