欢迎访问《生态学杂志》官方网站,今天是 分享到:

生态学杂志 ›› 2025, Vol. 44 ›› Issue (11): 3559-3568.doi: 10.13292/j.1000-4890.202511.019

• 研究报告 • 上一篇    下一篇

基于FvCB模型的3种亚热带阔叶树种光合生理生化特性对短期光强变化的响应

高冠女1,2,唐星林3,吕惠飞4,王灵玲5,周本智1*   

  1. 1中国林业科学研究院亚热带林业研究所/国家林草局钱江源森林生态系统定位观测研究站, 杭州 311400; 2南京林业大学, 南京 210037; 3江西省林业科学院, 南昌 330013; 4浙江省建德市林业总场, 杭州 311600; 5浙江省杭州市富阳区林业水利局, 杭州 311400)
  • 出版日期:2025-11-10 发布日期:2025-11-06

Photosynthetic physiological and biochemical response of three subtropical broadleaved tree species to short-term changes in light intensity based on FvCB model.

GAO Guannü1,2, TANG Xinglin3, LYU Huifei4, WANG Lingling5, ZHOU Benzhi1*   

  1. (1Research Institute of Subtropical Forestry, Chinese Academy of Forestry / Qianjiangyuan Forest Ecosystem Research Station of National Forestry and Grassland Administration, Hangzhou 311400, China; 2Nanjing Forestry University, Nanjing 210037, China; 3Jiangxi Academy of Forestry, Nanchang 330013, China; 4Jiande Forestry General Farm, Hangzhou 311600, China; 5Zhejiang Hangzhou Fuyang Forestry and Water Resources Bureau, Hangzhou 311400, China).

  • Online:2025-11-10 Published:2025-11-06

摘要: 为探讨亚热带阔叶树种光适应的生理生态策略,采用直角双曲线修正模型和FvCB模型拟合了乌桕(Sapium sebiferum)、青冈(Cyclobalanopsis glauca)和苦槠(Castanopsis sclerophylla)在不同光照强度(200、500、800和1100 μmol·m-2·s-1)下的荧光CO2响应曲线(A/Ci),并对其光合生理生化特征进行研究。结果表明:当胞间CO2浓度(Ci)<30 Pa时,3种植物叶片净光合速率(A)几乎呈线性增加,而且光照强度越大,A的增幅越大;当Ci>30 Pa时,A增加趋于缓慢,且相同Ci下,A随着光照强度的增大而显著增加。叶片气孔导度(gs)随Ci的增大而减小;相同Ci下,gs随光照强度的增大而显著增加。当Ci<35 Pa时,光系统II电子传递速率(J)随Ci的增大而显著增加;当Ci>35 Pa时,J均随着Ci增大而趋于平稳。在3个光照强度(500、800和1100 μmol·m-2·s-1)下,初始羧化效率(Φc)均显著大于200 μmol·m-2·s-1光照强度。高光照强度下(>500 μmol·m-2·s-1),3种植物叶片的光合能力(Pnmax)均大于低光照强度。随着光照强度的增大,叶肉导度(gm)呈显著上升趋势,而最大电子传递速率(Jmax)、Rubisco酶最大羧化速率(Vcmax)以及光照条件下的暗呼吸速率(Rd)均不受光照强度的影响。研究表明,亚热带阔叶树种乌桕、青冈和苦槠在高光照强度下通过增强gm和光能利用效率提升光合固碳能力,且其光合生理生化特性对光照强度变化响应明显,为亚热带人工林树种选育及全球气候变化背景下森林碳汇动态预测提供了重要理论依据。


关键词: 光合作用, FvCB模型, 光合有效辐射, 光响应, 光合参数

Abstract: To investigate the physiological and ecological strategies of light adaptation in subtropical broadleaved tree species, the modified rectangular hyperbola model and the FvCB model were used to fit the fluorescence CO2 response curves (A/Ci curves) of Sapium sebiferum, Cyclobalanopsis glauca, and Castanopsis sclerophylla under different light intensities (200, 500, 800, and 1100 μmol·m-2·s-1). The photosynthetic physiological and biochemical characteristics of these species were then analyzed. The results showed that when intercellular CO2 concentration (Ci)<30 Pa, leaf net photosynthetic rate (A) of the three tree species increased almost linearly, and the greater the light intensities, the greater the increase of A. When Ci>30 Pa, the increase of A tended to be slow. Under the same Ci, A increased significantly with the increase of light intensity. Stomatal conductance (gs) decreased with the increase of Ci. Under the same Ci, gs increased significantly with the increases of light intensity. When Ci<35 Pa, the electron transport rate (J) of PSII increased significantly with the increases of Ci. When Ci>35 Pa, J tended to be stable with the increases of Ci. Under the three light intensities (500, 800 and 1100 μmol·m-2·s-1), initial carboxylation efficiency (Φc) was significantly greater than that at light intensity of 200 μmol·m-2·s-1. When light intensity >500 μmol·m-2·s-1, leaf photosynthetic capacity (Pnmax) of the three species were higher than that at lower light intensities. Mesophyll conductance (gm) increased significantly with the increases of light intensity. The maximum electron transfer rate (Jmax), maximum carboxylation rate of Rubisco (Vcmax), and light dark respiration rate (Rd) were not affected by light intensity. Sapium sebiferum, Cyclobalanopsis glauca, and Castanopsis sclerophylla could enhance photosynthetic carbon sequestration capacity by increasing gm and light energy utilization efficiency under high light intensities, and the photosynthetic physiological and biochemical characteristics responded significantly to light intensity changes, which provide an important theoretical basis for the breeding of subtropical plantation tree species and the prediction of forest carbon sink dynamics under the background of global climate change.


Key words: photosynthesis, FvCB model, photosynthetically active radiation, light response, photosynthetic parameter