欢迎访问《生态学杂志》官方网站,今天是 分享到:

生态学杂志 ›› 2025, Vol. 44 ›› Issue (10): 3481-3490.doi: 10.13292/j.1000-4890.202510.017

• 综合评述 • 上一篇    下一篇

海草对全球变暖的响应与适应机制

黄育莹1,2,罗红雪1,3,刘松林1,3,4*,江志坚1,3,4,吴云超1,3,4,黄小平1,3,4   

  1. 1中国科学院南海海洋研究所, 热带海洋环境与岛礁生态全国重点实验室, 广东省应用海洋生物学重点实验室, 广州 510301; 2海南大学海洋生物与水产学院, 海口 570100; 3中国科学院大学, 北京 100049; 4海南三亚海洋生态系统国家野外科学观测研究站, 中国科学院海南热带海洋生物实验站, 海南省热带海洋生物技术重点实验室, 海南三亚 572000)

  • 出版日期:2025-10-10 发布日期:2025-10-14

Response and adaptation mechanism of seagrass to global warming.

HUANG Yuying1,2, LUO Hongxue1,3, LIU Songlin1,3,4*, JIANG Zhijian1,3,4, WU Yunchao1,3,4, HUANG Xiaoping1,3,4   

  1. (1State Key Laboratory of Tropical Oceanography, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China; 2College of Marine Biology and Fisheries, Hainan University, Haikou 570100, China; 3University of Chinese Academy of Sciences, Beijing 100049, China; 4Sanya National Marine Ecosystem Research Station, Tropical Marine Biological Research Station in Hainan, Chinese Academy of Sciences, Key Laboratory of Tropical Marine Biotechnology of Hainan Province, Sanya 572000, Hainan, China).

  • Online:2025-10-10 Published:2025-10-14

摘要: 海草是近岸海域具有极高生产力的初级生产者,其生长受到温度的调控。然而,近年来,全球变暖不断加剧,温度胁迫已经成为影响海草生长的主要影响因子之一,对全球变暖的适应性决定了海草能否发挥其生态服务功能。本文从海草的生理代谢、分布格局等多个方面,对全球变暖情形下的海草的响应与适应机制进行总结。研究表明,升温会改变海草体内碳水化合物含量,抑制海草吸收和同化氮的能力,降低海草体内总氮和与氮循环相关的代谢物含量,从而威胁海草的生存;同时,升温会抑制海草光合系统PSII的活性,温带与热带海草光合作用的平均阈值温度分别为22.3和29.8 ℃;升温还会导致海草生长速率与生物量下降,温带与热带的海草在升温的情景下会逐渐向高纬度地区迁移。为应对升温的胁迫环境条件,海草可通过增加热耗散、累积饱和脂肪酸以及提高抗氧化酶活性和热激蛋白(HSP70、HSP90)的表达量等方式,保持其形成的生态系统的重要功能。最后,本文提出未来的研究重点:(1)阐明升温对海草体内碳分配的影响规律;(2)揭示海草光合作用应对升温胁迫的分子机制;(3)厘清热带海草分布格局在全球变暖情形下的变化趋势;(4)探究抗氧化酶活性与其基因表达对升温的响应机理。本研究将有助于更好地理解海草在全球变暖下的生存状况,并为保护海草生态系统提供科学依据。


关键词: 高温胁迫, 海草资源, 光合作用, 碳氮代谢, 适应机制

Abstract: Seagrass exhibits high levels of primary productivity in nearshore waters, and its growth is regulated by temperature. Under the background of global climate change, temperature stress has emerged as a significant factor affecting seagrass growth. Adaptation to global warming determines whether seagrass can fulfill its ecological services. We summarized the response and adaptation mechanisms of seagrass to global warming from the aspects of the physiological metabolism, distribution pattern, and gene expression. It was found that increasing temperatures changed the carbohydrate content in seagrass and inhibited its ability to absorb and assimilate nitrogen. This subsequently led to a reduction in the total nitrogen content and the metabolites related to nitrogen cycling in seagrass, and ultimately threatening its survival. Moreover, increasing temperature also inhibited the PSII activity of the photosynthetic system. The average threshold of temperature for photosynthesis in temperate and tropical seagrass is 22.3 and 29.8 ℃, respectively. Warming also led to a decrease in the growth rate and biomass of seagrass. Temperate and tropical seagrass gradually migrated to higher latitudes under the warming scenarios. In response to the stress of warming, seagrass can maintain the important functions of the ecosystems by increasing heat dissipation, accumulating saturated fatty acids, and increasing the activity of antioxidant enzymes and the expression of heat shock proteins (HSP70, HSP90). Finally, we proposed future research priorities: (1) clarifying the effects of increased temperature on the pattern of carbon partitioning in seagrass; (2) identifying the molecular mechanism of seagrass photosynthesis in response to high temperature stress; (3) investigating the effects of global warming on the distribution of tropical seagrass; and (4) exploring the mechanisms of high temperature stress on antioxidant enzyme activity and gene expression. These studies are essential to fully understand the survival potential of seagrass under global climate change and provide a scientific basis for the protection of seagrass ecosystems.


Key words: heat stress, seagrass resource, photosynthesis, carbon and nitrogen metabolism, adaptation mechanism