欢迎访问《生态学杂志》官方网站,今天是 分享到:

生态学杂志 ›› 2025, Vol. 44 ›› Issue (10): 3407-3416.doi: 10.13292/j.1000-4890.202510.026

• 研究报告 • 上一篇    下一篇

基于转录组分析镉胁迫下栓皮栎叶片的分子响应机制

谭灿灿1,2,聂稳2,刘逸夫2,王亚3,袁艳超2,刘建锋3,常二梅3,肖文发2,贾子瑞3*   

  1. 1深圳坤元生态科技有限公司, 广东深圳 518000; 2中国林业科学研究院森林生态环境与保护研究所, 北京 100091; 3中国林业科学研究院林业研究所, 北京 100091)
  • 出版日期:2025-10-10 发布日期:2025-10-13

Transcriptome-based analysis of molecular response mechanisms of Quercus variabilis leaves to cadmium stress.

TAN Cancan1,2, NIE Wen2, LIU Yifu2, WANG Ya3, YUAN Yanchao2, LIU Jianfeng3, CHANG Ermei3, XIAO Wenfa2, JIA Zirui3*   

  1. (1Shenzhen Kunyuan Ecological Technology Co., Ltd., Shenzhen 518000, Guangdong, China; 2Ecology and Nature Conservation Institution, Chinese Academy of Forestry, Beijing 100091, China; 3Research Institute of Forestry, Chinese Academy of Forestry, Beijing 100091, China).

  • Online:2025-10-10 Published:2025-10-13

摘要: 镉污染是一个重要的生态环境问题,而栓皮栎相对于其他树种具有更强的耐重金属能力。为探讨栓皮栎对镉胁迫的分子响应机制,本研究以当年生栓皮栎幼苗为对象,用50、100、150 mg·L-1 CdCl2溶液胁迫栓皮栎幼苗的根部,对胁迫15、30、90 d后的栓皮栎叶片进行转录组高通量测序,鉴定其中的差异表达基因。通过对差异表达基因进行基因注释、富集分析、加权基因共表达网络分析(weighted gene co-expression network analysis, WGCNA)和转录组调控网络分析,以筛选出与栓皮栎Cd耐受相关的关键基因。结果显示:胁迫15 d时有23930个差异表达基因,GO富集分析显示这些基因主要富集在“染色体调节过程活性”和“能量代谢过程”;胁迫30 d时有15675个差异表达基因,GO富集显示这些基因主要富集在“离子通道活性”、“细胞分裂调控”与“相关酶活性”方面;90 d时有12701个差异表达基因,GO富集显示这些基因主要富集在“跨膜转运体活性”方面。WGCNA分析显示,蓝色模块和黄色模块与Cd胁迫相关性最强;蓝色模块中甘氨酸裂解系统P蛋白(GCSPP)、咖啡酰CoA O甲基转移酶(CCOM)和DNA损伤修复/耐受蛋白DRT102-like(DDRP)起着关键作用;黄色模块中核糖体生物发生蛋白WDR12同源物(RBP)起着关键作用。本研究筛选出了栓皮栎Cd耐受的差异表达基因,其中4个基因在栓皮栎Cd耐受中起着枢纽作用,为阐释栓皮栎耐Cd和脱毒的分子机制奠定基础。


关键词: 栓皮栎, 转录组, 差异表达基因, 基因富集, 加权基因共表达网络分析

Abstract: Cadmium (Cd) pollution is an important environmental problem. Quercus variabilis has stronger tolerance to heavy metals than other tree species. To clarify the molecular response of Q. variabilis to Cd stress, high-throughput sequencing of the transcriptome was performed on leaves of current-year seedlings subjected to 15, 30, and 90 days of stress with CdCl2 solutions at concentrations of 50, 100, and 150 mg·L-1. Differentially expressed genes (DEGs) were identified. Subsequent analyses of DEGs included gene annotation, gene enrichment analysis, weighted gene co-expression network analysis (WGCNA), and transcriptional regulatory network analysis, aimed to identify key genes associated with Cd tolerance in Q. variabilis. The results showed that a total of 23930 DEGs were identified after 15 days of Cd stress. Gene Ontology (GO) enrichment analysis indicated that these genes were predominantly enriched in terms related to “chromosome regulation activity” and “energy metabolism process”. A total of 15675 DEGs were identified after 30 days of Cd stress. GO enrichment analysis demonstrated that these genes were primarily enriched in “ion channel activity”, “cell division regulation”, and “enzyme activity”. A total of 12701 DEGs were identified after 90 days of Cd stress. GO enrichment analysis indicated that these genes were predominantly enriched in “transmembrane transporter activity”. The WGCNA revealed that the blue and yellow modules exhibited the strongest correlation with Cd stress. Glycine Cleavage System P Protein (GCSPP), Caffeoyl-CoA O-methyltransferase (CCOM), and DNA Damage Repair/Tolerance Protein DRT102-like (DDRP) played a key role in the blue module. The ribosome biogenesis protein WDR12 homolog (RBP) played a key role in the yellow module. This study screened DEGs related to Cd tolerance in Q. variabilis, among which four genes play a pivotal role in Cd tolerance of Q. variabilis, laying a foundation for elucidating the molecular mechanisms of Cd tolerance and detoxification in Q. variabilis.


Key words: Quercus variabilis, transcriptome, differentially expressed genes (DEGs), gene enrichment, weighted gene co-expression network analysis (WGCNA)