欢迎访问《生态学杂志》官方网站,今天是 分享到:

生态学杂志 ›› 2023, Vol. 42 ›› Issue (9): 2091-2099.doi: 10.13292/j.1000-4890.202309.010

• 研究报告 • 上一篇    下一篇

干旱胁迫下杉木叶片吸水及水分逆向运移特征

陈玉1,2,3,贾剑波1,2,3*,颜成正1,3,4,胡育文1,2,任鑫磊1,2,王一帆1,3,4,吴小红1,3,4


  

  1. 1中南林业科技大学, 长沙 410004; 2中南林业科技大学水土保持与荒漠化防治湖南省高等学校重点实验室, 长沙 410004; 3湖南芦头森林生态系统国家定位观测研究站, 湖南岳阳 414000; 4南方林业生态应用技术国家工程实验室, 长沙 410004)

  • 出版日期:2023-09-10 发布日期:2023-08-30

Characteristics of leaf water absorption and water reverse transport in Cunninghamia lanceolata under drought stress.

CHEN Yu1,2,3, JIA Jianbo1,2,3*, YAN Chengzheng1,3,4, HU Yuwen1,2, REN Xinlei1,2, WANG Yifan1,3,4, WU Xiaohong1,3,4#br#

#br#
  

  1. (1Central South University of Forestry and Technology, Changsha 410004, China; 2Key Laboratory of Soil and Water Conservation and Desertification Combating, Ministry of Education, Changsha 410004, China; 3Hunan Lutou Forest Ecosystem National Orientation Observation and Research Station, Yueyang 414000, Hunan, China; 4National Engineering Laboratory of Applied Technology for Forestry and Ecology in Southern China, Changsha 410004, China).

  • Online:2023-09-10 Published:2023-08-30

摘要: 全球气候变化下降水格局时空分布不均导致亚热带地区季风气候周期性干旱日益严重,而叶片吸水对缓解植物干旱胁迫具有重要的生态和水文效应。本研究以盆栽杉木(Cunninghamia lanceolata)作为对象,利用重水(δD)喷施模拟降水,设置4个土壤水分(自然充沛、自然适宜、轻度干旱和中度干旱,分别对应实际土壤含水量(SWC)21%~26%、16%~21%、12%~16%和8%~12%)和4个叶面湿润时长(10、30、40和60 min),对杉木叶片吸水及逆向运移重水的利用比例进行连续监测。结果表明:当土壤受到干旱胁迫(SWC 8%~16%),叶片持续喷湿时间≥30 min时,叶片会发生吸水,且叶片吸收的水分可沿叶枝根的水势梯度逆向运移到木质部和根附近土壤中,改善植物水分状况;叶片对逆向运移重水的利用比例随降水结束后时间的增加而逐渐减小,在降水结束1 h后达到最大值,为10.82%;枝条和根对逆向运移重水的利用比例随降水结束后时间的增加先升高后缓慢减小,其分别在降水结束2 h和2~4 h后利用比例达到最大,为8.36%和0.65%,说明杉木各个部位对逆向运移重水的利用比例不同,响应时间也不同且存在一定的滞后性。因此,杉木可以通过根和叶吸收水分,对季节性干旱地区利用自然水资源、有效缓解自身干旱胁迫具有重要意义。


关键词: 干旱胁迫, 叶片吸水, 同位素标记法, 水分利用

Abstract: Uneven spatial and temporal distribution of precipitation pattern induced by global climate change has caused the increasingly serious periodic drought of monsoon climate in subtropical regions. Water uptake of leaves plays important ecological and hydrological roles in alleviating drought stress. In this study, potted Chinese fir (Cunninghamia lanceolata) was sprayed with heavy water (δD) to simulate precipitation. We conducted a continuous monitoring on utilization ratio of water absorption and reverse migration of Chinese fir leaves under four soil moisture levels (naturally abundant, naturally suitable, slightly dry, moderately dry; the corresponding actual soil water content (SWC) was 21%-26%, 16%-21%, 12%-16%, and 8%-12%, respectively) and four durations of leaf wetting (10, 30, 40, and 60 min). The results showed that under drought stress (SWC 8%-16%) and when the duration of leaf wetting was ≥ 30 min, foliar water uptake occurred across all soil moisture treatments, and water absorbed by leaves could be reversely transported to the xylem and soil near roots along the leaf-branch-root water potential gradient, which can improve water status of plants. The proportion of leaf utilization of reversely transported heavy water gradually decreased with the increases of time after the end of simulated precipitation, and reached the maximum value of 10.82% one hour after precipitation. The utilization ratio of reversely transported heavy water by branches and roots firstly increased and then decreased slowly with the increases of time after the precipitation; the utilization ratio reached the maximum value of 8.36% and 0.65% after 2 h and 2-4 h after the precipitation, respectively. These results indicate that the response time of different parts of C. lanceolata is different and that there is a certain lag in the utilization ratio of reversely transported heavy water. Therefore, C. lanceolata can absorb water through leaves and roots, which is of great significance to effectively utilize natural water resources and alleviate drought stress in seasonally dry regions.


Key words: drought stress, foliar water uptake, isotope labeling method, water use efficiency.