欢迎访问《生态学杂志》官方网站,今天是 分享到:

生态学杂志 ›› 2023, Vol. 42 ›› Issue (3): 591-598.doi: 10.13292/j.1000-4890.202303.008

• 研究报告 • 上一篇    下一篇

闽江河口湿地土壤羟胺和亚硝态氮非生物过程N2O产生潜力及其影响因素

漆梦婷1,罗柳1,王宛珍1,钱伟1,2,仝川1,2,李小飞1,2*


  

  1. 1福建师范大学地理科学学院, 福州 350007; 2福建师范大学湿润亚热带生态地理过程教育部重点实验室, 福州 350007)

  • 出版日期:2023-03-10 发布日期:2023-03-07

Potential and affecting factors of N2O production through abiotic processes of hydroxylamine and nitrite in wetland soils of Min River Estuary.

QI Mengting1, LUO Liu1, WANG Wanzhen1, QIAN Wei1,2, TONG Chuan1,2, LI Xiaofei1,2*#br#

#br#
  

  1. (1School of Geographical Sciences, Fujian Normal University, Fuzhou 350007, China; 2Key Laboratory of Humid Subtropical Eco-geographical Processes of Ministry of Education, Fujian Normal University, Fuzhou 350007, China).

  • Online:2023-03-10 Published:2023-03-07

摘要:

河口湿地氮转化的非生物过程可产生氧化亚氮(N2O)。羟胺(NH2OH)和亚硝态氮(NO2-)可通过非生物过程产生N2O,但其产生潜力及其影响因素不甚清楚。本研究以亚热带典型河口——闽江河口湿地为对象,通过不加氮(CK)、加NH2OH和NO2- 3种处理,研究其非生物过程N2O产生潜力及其影响因素。结果表明,不同处理N2O产生速率具有显著差异(P<0.05)。添加NH2OH、NO2-和不加氮土壤非生物过程N2O产生速率分别为16.88~307.99、-0.50~27.51和-1.20~2.97 ng·g-1·h-1。土壤添加NH2OH非生物过程产生N2O的贡献为20.74%~98.73%,而添加NO2-贡献为1.27%~79.26%。5种植被土壤在3种处理下非生物过程N2O平均产生速率差异显著(P<0.05)。NO2-非生物过程N2O平均产生速率为秋茄>互花米草>芦苇>海三棱藨草>短叶茳芏土壤,而NH2OH非生物过程N2O平均产生速率为海三棱藨草>互花米草>芦苇>短叶茳芏>秋茄土壤。土壤中羟胺具有较高的非生物产生N2O潜力,不同植被土壤NH2OH和NO2-非生物过程产生N2O存在明显的差异。土壤pH、NO2-、NO3-、Fe2+、Fe3+和C/N是影响NH2OH和NO2-非生物过程产生N2O的主要影响因素。


关键词: 羟胺, 亚硝态氮, 非生物过程, 氧化亚氮, 闽江口

Abstract: Abiotic nitrogen transformation processes can generate N2O in estuarine wetlands. The abiotic processes of hydroxylamine (NH2OH) and nitrite (NO2-) can produce N2O, but production potential and affecting factors remain unclear. We conducted an experiment with three treatments (without nitrogen addition (CK), NH2OH and NO2- additions) to determine N2O production rates from abiotic processes in wetland soils of Min River Estuary. The results showed that N2O production rates significantly differed among three treatments (P<0.05). The potential production rates of N2O from abiotic processes under NH2OH addition, NO2- addition, and without nitrogen treatments ranged from 16.88 to 307.99, -0.50 to 27.51 and -1.20 to 2.97 ng·g-1·h-1, respectively. The contributions of N2O production from abiotic processes of NH2OH and NO2- additions were 20.74%-98.73% and 1.27%-79.26%, respectively. Average N2O production rates of abiotic processes for all the five soil types varied significantly among the three treatments (P<0.05). The average N2O production rates of abiotic process of NO2- were in the order of Kandelia candel>Spartina alterniflora>Phragmites australis>Scirpus mariqueter>Cyperus malaccensis, while the rates of abiotic processes of NH2OH were S. mariqueter>S. alterniflora>P. australis>C. malaccensis>K. candel. These results suggest that abiotic processes of NH2OH have higher N2O production rates compared to NO2-, and the N2O production from abiotic processes of soil NH2OH and NO2- varied largely among different vegetation soils. Soil pH, NO2-, NO3-, Fe2+, Fe3+  and C/N ratio were crucial factors affecting N2O production rates from abiotic processes of NH2OH and NO2-.


Key words: hydroxyamine, nitrite, abiotic process, nitrous oxide, Min River Estuary.