欢迎访问《生态学杂志》官方网站,今天是 分享到:

生态学杂志 ›› 2021, Vol. 40 ›› Issue (12): 3860-3869.doi: 10.13292/j.1000-4890.202112.015

• 研究报告 • 上一篇    下一篇

香格里拉普达措国家公园长苞冷杉种群空间分布格局及关联性

顾荣1,张彩彩1*,和正华2,杨荣2,陈瑶2,冯萍2,斯那取宗2   

  1. (1大理大学东喜玛拉雅研究院, 云南大理 671003; 2香格里拉普达措国家公园管理局, 云南迪庆 674499; 3中国科学院西双版纳热带植物园热带森林生态学重点实验室, 昆明 650201)
  • 出版日期:2021-12-10 发布日期:2022-05-10

Population spatial distribution pattern and association of Abies georgei in Shangri LaPotatso National Park.

GU Rong1, ZHANG Cai-cai1*, HE Zheng-hua2, YANG Rong2, CHEN Yao2, FENG Ping2, SINA Qu-zong2, ZHAO Dong-lian2, YIXI Yang-chu2, WU Jun-hua2, LIN Lu-xiang3   

  1. (1Institute of EasternHimalaya Biodiversity Research, Dali University, Dali 671003, Yunnan, China; 2Potatso National Park Administration of ShangriLa, Diqing 674499, Yunnan, China; 3CAS Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming 650201, China).
  • Online:2021-12-10 Published:2022-05-10

摘要: 植物种群不同发育阶段的空间分布格局及关联性能够反映植物种群的现状和发展趋势,并揭示其背后潜在的生态过程。本研究以云南省香格里拉普达措国家公园亚高山寒温性针叶林1 hm2永久固定监测样地内的优势种长苞冷杉(Abies georgei)为对象,分析其种群径级结构,并采用Ripley L函数探究其不同发育阶段空间分布格局及相互关联性。结果表明:(1)长苞冷杉的径级结构呈“金字塔”型分布,幼树(1 cm≤DBH<5 cm)、中树(5 cm≤DBH<15 cm)和成树(DBH≥15 cm)个体数量分别占整个种群数量的47.42%、31.55%和21.03%,种群结构为增长型,更新状态良好;(2)不同发育阶段长苞冷杉的空间分布格局存在差异。以完全空间随机为零模型,幼树和中树分别在0~45、0~35 m的尺度上呈显著的聚集分布;成树在所有尺度上呈随机分布;以异质泊松点过程为零模型去除生境异质性的效应后,幼树、中树和成树基本在所有尺度上呈随机分布,说明生境异质性是导致长苞冷杉种群不同径级空间聚集分布的主要原因;(3)幼树与中树在邻体尺度上呈显著正相关空间关联,幼树与成树、中树与成树均在邻体尺度上呈显著的负相关空间关联,并随着尺度的增大而逐渐减弱,最后呈不相关空间关联。潜在的负密度制约机制驱动长苞冷杉从幼树和中树的聚集分布转为成树的随机分布;长苞冷杉幼树和中树可能受同样的生境过滤影响而呈聚集分布,并导致二者呈现正相关空间关联,而潜在的成树对中树的不对称竞争以及潜在的专一性病原菌和害虫对幼树的攻击可能导致成树与中树、成树与幼树的负相关空间关联。

关键词: 空间点格局, Ripley L函数, 空间关联性, 零模型, 生境异质性

Abstract: The spatial distribution pattern and association of plant species at different developmental stages can reflect the status and growth trend of plant populations, and also can uncover the underlying ecological processes. We investigated the population of Abies georgei in a 1 hm2 dynamic plot, which was the dominant species in the subalpine cold temperate coniferous forest in ShangriLa Potatso National Park. We analyzed the diameter class structure of A. georgei, and the spatial distribution pattern for each of the three different developmental stages of A. georgei population and their spatial associations using Ripley’s L function. We found that: (1) The diameter class structure of A. georgei population presented a form of pyramid. The individual number of saplings (1 cm≤DBH<5 cm), mid-sized trees (5 cm≤DBH≤15 cm), and adults (DBH≥15 cm) accounted for 47.42%, 31.55%, and 21.03% of the total abundance, respectively, indicating a growing population with a good natural regeneration status. (2) The spatial distribution of A. georgei populations differed among different developmental stages. Results from the analysis with complete spatial randomness null model showed that saplings and mid-sized trees tended to be significantly aggregated at 0-45 m and 0-35 m scales respectively, and that adults were randomly distributed at all the scales. We used the heterogeneous Poisson process null model to eliminate the effects of habitat heterogeneity and found that saplings, mid-sized trees and adults were randomly distributed at all the scales. This result indicated that habitat heterogeneity was the main reason for the aggregation of A. georgei population at different developmental stages. (3) Saplings showed positive spatial correlation with mid-sized trees at neighborhood scale. Both were negatively correlated with adults at the neighborhood scale, but such negative correlation turned to be weakened and uncorrelated with increasing spatial scale. The potential negative density-dependence effect may result in the shift of spatial distribution from spatial aggregation for saplings and mid-sized trees to randomness for adults. The aggregated spatial pattern and the resulting positive correlation between saplings and mid-sized trees may be both resulted from habitat filtering. The negative spatial correlation between adults and saplings/mid-sized trees might be caused by the potential asymmetrical competition of adults with mid-sized trees and the attack of specific pathogens and pests on saplings.

Key words: spatial point pattern, Ripley’s L function, spatial association, null model, habitat heterogeneity.