欢迎访问《生态学杂志》官方网站,今天是 分享到:

生态学杂志 ›› 2021, Vol. 40 ›› Issue (9): 2727-2736.doi: 10.13292/j.1000-4890.202109.010

• 研究报告 • 上一篇    下一篇

高浓度臭氧下银杏凋落叶的分解特征

王楠1,2,王义婧1,2,平琴2,3,徐胜1,2*,李岩1,4,何兴元1,2,4,陈玮1,2,4   

  1. 1中国科学院森林生态与管理重点实验室, 中国科学院沈阳应用生态研究所, 沈阳 110016; 2中国科学院大学, 北京 100049;3中国科学院生态环境研究中心, 北京 100085; 4中国科学院沈阳树木园, 沈阳 110016)
  • 出版日期:2021-09-10 发布日期:2021-09-09

Characteristics of leaf litter decomposition of Ginkgo biloba L. exposed to elevated O3 concentration.

WANG Nan1,2, WANG Yi-jing1,2, PING Qin2,3, XU Sheng1,2*, LI Yan1,4, HE Xing-yuan1,2,4, CHEN Wei1,2,4   

  1. (1CAS Key Laboratory of Forest Ecology and Management, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, China; 2University of Chinese Academy of Sciences, Beijing 100049, China; 3Research Center for EcoEnvironmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; 4Shenyang Arboretum, Chinese Academy of Sciences, Shenyang 110016, China).
  • Online:2021-09-10 Published:2021-09-09

摘要: 为探究高浓度臭氧对凋落叶分解的影响,采用开顶箱(OTCs)模拟和凋落物网袋分解法,以经一个生长季自然条件(约40 nmol·mol-1)和高浓度臭氧条件(160 nmol·mol-1)熏蒸形成的10年生银杏凋落叶为实验材料,开展了不同浓度臭氧(对照约40 nmol·mol-1和高浓度160 nmol·mol-1)对这两种银杏凋落叶分解速率和养分释放影响的研究。实验包括4个处理:经自然条件形成的银杏凋落叶在自然条件下分解(AA);经自然条件形成的银杏凋落叶在高浓度O3条件下分解(AE);经高浓度O3熏蒸形成的银杏凋落叶在自然条件下分解(EA);经高浓度O3熏蒸形成的银杏凋落叶在高浓度O3条件下分解(EE)。结果表明:相比于自然条件下形成的银杏凋落叶,经高浓度O3熏蒸形成的银杏凋落叶中K、Mg、P、Ca、Mn、缩合单宁、木质素及总酚含量均显著下降(P<0.05),而N含量则增加了15.87%(P<0.01)。分解第195天,与AA组相比,AE组减缓了凋落叶木质素的分解(P<0.05),促进了C、N元素的释放,特别是经高浓度O3熏蒸银杏的凋落叶(P<0.05)。AA组和AE组木质素剩余率分别为25.22%和29.89%,C元素剩余率分别为41.29%和36.61%,N元素剩余率分别为75.68%和70.17%。研究表明,高浓度臭氧通过改变凋落叶分解过程可间接影响城市森林生态系统主要树种的C、N循环。

关键词: 银杏, 叶凋落物, 高浓度O3, 分解速率, 养分释放

Abstract: To clarify the effects of elevated ozone (O3) concentration on leaf litter decomposition, we carried out a litterbag experiment and examined the decomposition rate and nutrient release of leaf litter of G. biloba L. exposed to ambient air (about 40 nmol·mol-1) and elevated O3 concentration (160 nmol·mol-1) using open-top chambers (OTCs). Leaf litter from 10-year-old G. biloba incubated under ambient air (about 40 nmol·mol-1) and elevated O3 concentration (160 nmol·mol-1) for one growing season was collected. There were four treatments: decomposing under ambient air for those incubated under ambient air (AA, control); decomposing under elevated O3 concentration for those incubated under ambient air (AE); decomposing under ambient air for those incubated under elevated O3 concentration (EA); decomposing under elevated O3 concentration for those incubated under elevated O3 concentration (EE). Compared with leaf litter incubated under ambient air, the contents of K, Mg, P, Ca, Mn, condensed tannins, lignin, and total phenols of litter incubated under elevated O3 concentration significantly decreased (P<0.05), while N content increased by 15.87% (P<0.01). After 195 days decomposition, compared with AA group, the decomposition of lignin was lower in AE group (P<0.05), while the release of C and N was higher, especially for those incubated under elevated O3 concentration (P<0.05). The remaining rates of lignin, C, and N in group AA were 25.22%, 41.29% and 75.68%, while those in group AE were 29.89%, 36.61% and 70.17%, respectively. Our results suggest that increasing atmospheric O3 concentration can indirectly affect carbon and nitrogen cycling of urban forest ecosystems by altering litter decomposition of main tree species.

Key words: Ginkgo biloba L., leaf litter, elevated ozone concentration, decomposition rate, nutrient release.