欢迎访问《生态学杂志》官方网站,今天是 分享到:

生态学杂志 ›› 2020, Vol. 39 ›› Issue (12): 3934-3942.doi: 10.13292/j.1000-4890.202012.010

• 研究报告 • 上一篇    下一篇

施氮通过改变微生物生物量磷驱动杉木人工林土壤磷组分转化

谢欢1,2,张秋芳3,曾泉鑫1,2,李宇轩1,2,马亚培1,2,林惠瑛1,2,刘苑苑1,2   

  1. (1福建师范大学地理科学学院, 福州 350007; 2湿润亚热带山地生态国家重点实验室培育基地, 福州 350007; 3北京大学城市与环境学院, 北京 100871)
  • 出版日期:2020-12-10 发布日期:2021-06-10

Nitrogen application drives the transformation of soil phosphorus fractions in Cunninghamia lanceolata plantation by changing microbial biomass phosphorus.

XIE Huan1,2, ZHANG Qiu-fang3, ZENG Quan-xin1,2, LI Yu-xuan1,2, MA Ya-pei1,2, LIN Hui-ying1,2, LIU Yuan-yuan1,2, YIN Yun-feng1,2, CHEN Yue-min1,2*#br#   

  1. (1School of Geographical Science, Fujian Normal University, Fuzhou 350007, China; 2State Key Laboratory of Subtropical Mountain Ecology, Fuzhou 350007, China; 3College of Urban and Environmental Sciences, Peking University, Beijing 100871, China).
  • Online:2020-12-10 Published:2021-06-10

摘要: 磷(P)素是限制植物生产力的重要养分,对维持森林生态系统平衡起着重要作用。中国南方已成为继欧美之后的第三大氮(N)沉降区,了解N沉降加剧对南方土壤中不同P组分转化的影响对维持植物生长具有重要意义。杉木是中国南方重要的人工林,本研究以杉木为对象,设置对照(0 kg N·hm-2·a-1)、低N(40 kg N·hm-2·a-1)和高N(80 kg N·hm-2·a-1)3个处理,测定不同处理土壤基本理化性质、P组分的含量、微生物生物量以及磷酸酶活性。结果表明,施N促进了有机P和无机P之间的转化,增加了NaHCO3-Pi含量和土壤有效P含量,进而满足植物生长需要。施N还显著提高了微生物生物量磷和酸性磷酸酶活性。冗余分析显示,微生物生物量磷与土壤无机P呈显著正相关,说明土壤无机P主要受微生物生物量磷调控。本研究为未来N沉降加剧背景下,受P素限制的亚热带地区土壤P转化的生物地球化学模型参数提供了参考依据。

关键词: 氮添加, 磷转化, 微生物生物量, 酸性磷酸酶

Abstract: Phosphorus (P) is an important limiting nutrient for plant productivity, with a vital role in maintaining forest ecosystem balance. As southern China has become the third largest nitrogen (N) deposition area after Europe and the United States, understanding the effects of increasing N deposition on the transformation of different P fractions in soil is crucial for maintaining plant growth. Cunninghamia lanceolataplantations are important in the subtropics. In this study, we measured soil physicochemical properties, P fraction concentrations, microbial biomass, and phosphatase activity in C. lanceoata plantations by applying control (0 kg N·hm-2·a-1), low N (40 kg N·hm-2·a-1), and high N (80 kg N·hm-2·a-1) treatments. Results showed that N application promoted the transformation between organic and inorganic P, and increased soil NaHCO3Pi and available P concentrations, thus providing available P for plant growth. Nitrogen application significantly increased microbial biomass P and acid phosphatase activity. A redundancy analysis indicated that soil inorganic P was significantly positively correlated with microbial biomass P and that soil inorganic P was mainly driven by microbial biomass P. Our results provide a reference for the biogeochemical model parameters of soil P transformation in P limited subtropical region in the context of the intensification of N deposition.

Key words: nitrogen application, phosphorus transformation, microbial biomass, acid phosphatase.