欢迎访问《生态学杂志》官方网站,今天是 分享到:

生态学杂志 ›› 2025, Vol. 44 ›› Issue (9): 2855-2863.doi: 10.13292/j.1000-4890.202509.027

• 研究报告 • 上一篇    下一篇

CO2浓度升高对不同杉木家系幼苗非结构性碳水化合物的积累与转运的影响

郭志娟1,2,邹显花1,2*,巫锡2,李燕敏2,秦易2,杨梦佳2,彭志远2,朱丽琴2,黄荣珍2
  

  1. 1流域水土保持江西省重点实验室, 南昌 330029; 2南昌工程学院, 流域生态智能监测与综合治理江西省重点实验室, 南昌 330099)

  • 出版日期:2025-09-10 发布日期:2025-09-03

Effects of elevated CO2 concentration on the accumulation and translocation of non-structural carbohydrates in seedlings of different Chinese fir families.

GUO Zhijuan1,2, ZOU Xianhua1,2*, WU Xi2, LI Yanmin2, QIN Yi2, YANG Mengjia2, PENG Zhiyuan2, ZHU Liqin2, HUANG Rongzhen2   

  1. (1Jiangxi Key Laboratory of Watershed Soil and Water Conservation, Nanchang, 330029, China; 2Nanchang University of Technology, Jiangxi Provincial Key Laboratory of Watershed Ecological Intelligent Monitoring and Integrated Governance, Nanchang 330099, China).

  • Online:2025-09-10 Published:2025-09-03

摘要: 探明杉木的光合碳分配对大气CO2浓度升高的响应,为适应变化气候条件的杉木品系筛选及推广提供理论支撑。本研究以1年生杉木家系NO.020和NO.061幼苗为对象,设置(400、800和1000 μmol·mol-1)3个CO2浓度,采用13C同位素脉冲标记法示踪外源13C在不同杉木家系体内的固定与分配,分析不同CO2浓度处理下植株体内外源总C的吸收固定和非结构性碳水化合物(可溶性糖与淀粉, NSC)含量的变化,结合不同杉木家系形态生长及生物量分配规律的比较,探究不同CO2浓度条件下不同杉木家系光合碳的分配策略。结果表明:NO.020与NO.061总13C积累量与NSC含量均表现为C1000>C800>C400;NO.020处理后1~5 d时,C800与C1000总13C积累量显著高于其他时间,且随时间延长呈下降趋势,表现为迅速吸收后代谢,而NO.061总13C积累量随CO2浓度升高不断增加,表现为持续吸收的状态;同时,与C400处理相比,C800与C1000处理30 d后NO.020地上部分可溶性糖总量分别下降40%与26.1%,淀粉含量增加32.8%与85.3%。根部NSC基本表现为C1000>C800>C400。在C1000处理下,NO.061处理15 d时,地上部分可溶性糖较C400处理增加了54.5%(P<0.05),30 d时地上部分淀粉含量达到C400的1.1倍;此外,CO2浓度升高使得NO.020与NO.061生物量和株高的增长速率提高。可见,不同基因型杉木在CO2浓度升高时的应对策略存在差异,NO.020相对于NO.061更为迅速地进行碳吸收与代谢,CO2浓度升高加速其地上部分可溶性糖向淀粉转化并将更多碳同化产物向根系转移,促进根系生长;NO.061则不断储备NSC并增加地上部的生长以此充分利用外源总C的供应。


关键词: CO2浓度升高, 非结构性碳水化合物, 碳分配, 光合碳, 杉木, 同位素标记

Abstract: To provide theoretical support for the selection and promotion of Chinese fir (Cunninghamia lanceolata) families adapted to changing climate, we investigated how elevated atmospheric CO2 concentration influenced photosynthetic carbon allocation in one-year-old seedlings of two Chinese fir families (NO.020 and NO.061). Using a 13C isotope pulse-labeling approach, we established three CO2 concentration treatments, i.e. ambient (400±50 μmol·mol-1), elevated (800±50 μmol·mol-1), and super-elevated (1000±50 μmol·mol-1), to trace the fixation and distribution of carbon across different plant tissues. We analyzed the differences of total carbon uptake, non-structural carbohydrate (NSC) dynamics (including soluble sugars and starch), and biomass allocation across treatments and families. Results showed that both families increased total 13C accumulation and NSC content with rising CO2 levels, with the highest values being observed under the 1000 μmol·mol-1 treatment (C1000). Family NO.020 exhibited rapid 13C assimilation within the first 5 days after labeling, particularly under C800 and C1000, followed by a decline over time, suggesting an initial burst of metabolic activity. In contrast, NO.061 displayed a more gradual but sustained increase in 13C accumulation, indicating a conservative carbon-use strategy. After 30 days, the aboveground soluble sugar content in NO.020 under C800 and C1000 decreased by 40% and 26.1%, respectively, whereas the aboveground starch content increased by 32.8% and 85.3% compared to ambient CO2 (C400). In NO.020, root NSC levels consistently followed the order C1000>C800>C400. Under C1000, soluble sugar content in the aboveground tissues of NO.061 increased by 54.5% at 15 days post-treatment (P<0.05), while the starch content increased 10% compared to C400 at 30 days. Elevated CO2 stimulated growth, as it increased biomass and plant height in both families. However, the two families had distinct adaptive strategies to elevated CO2. NO.020 demonstrated a faster rate of carbon uptake and metabolism, accompanied by a greater translocation of carbon from aboveground tissues to roots, which promoted root development. In contrast, NO.061 maintained higher NSC reserves in aboveground parts and prioritized shoot growth, likely optimizing resource capture under enhanced carbon availability. These findings reveal distinct carbon allocation strategies among Chinese fir families, highlighting the significance of family-specific responses in adapting to elevated CO2 and supporting climate-resilient reforestation.


Key words: elevated CO2,  non-structural carbohydrate, carbon allocation, photosynthetic carbon, Cunninghamia lanceolata, isotope labeling