欢迎访问《生态学杂志》官方网站,今天是 分享到:

生态学杂志 ›› 2025, Vol. 44 ›› Issue (5): 1601-1613.doi: 10.13292/j.1000-4890.202505.024

• 研究报告 • 上一篇    下一篇

我国林火情势的空间格局及其影响因素

邵献状1,2,李春林2,常禹2*,熊在平2,刘志华2,陈宏伟3
  

  1. 1山东师范大学地理与环境学院, 济南 250358; 2中国科学院沈阳应用生态研究所, 中国科学院森林生态与保育重点实验室, 沈阳 110016; 3沈阳大学生命科学与工程学院, 沈阳 110044)

  • 出版日期:2025-06-10 发布日期:2025-05-14

Spatial patterns of forest fire regimes and their influencing factors in China.

SHAO Xianzhuang1,2, LI Chunlin2, CHANG Yu2*, XIONG Zaiping2, LIU Zhihua2, CHEN Hongwei3   

  1. (1College of Geography and Environment, Shandong Normal University, Jinan 250358; 2CAS Key Laboratory of Forest Ecology and Silviculture, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, China; 3College of Life Science and Bioengineering, Shenyang University, Shenyang 110044, China).

  • Online:2025-06-10 Published:2025-05-14

摘要: 研究林火情势的空间格局及其驱动因素的空间非静态性有利于更好地理解林火干扰与森林生态系统之间的反馈关系,为合理制定林火管理政策提供依据。本文通过点格局分析、冷热点分析、景观格局分析方法,探讨我国林火情势的空间格局;利用全局泊松回归模型(GPR)和地理加权泊松回归模型(GWPR)方法,分析影响我国林火情势格局因素的空间非静态性。结果表明,GWPR模型变量回归系数的四分位距大于GPR模型的两倍标准误,林火情势及其影响因素的回归关系具有空间非静态性。GWPR模型的拟合效果(离差、AIC值、AICc值、变异可解释度)优于GPR模型,考虑空间非静态性可以提高模型拟合效果。我国林火发生频数主要影响因素是道路密度和森林覆盖率,我国过火面积主要影响因素是NDVI、道路密度和森林覆盖率;这些影响因素具有明显的空间非静态性,不同地区主导林火情势的环境因子不同,研究结果可为因地制宜地制定林火管理措施提供科学依据。


关键词: 林火情势, 地理加权泊松回归模型, 空间非静态性

Abstract: Investigating the spatial patterns of forest fires could aid in better understanding the feedbacks between fire disturbance and forest ecosystems, providing a scientific basis for making rational decisions of forest fire management. In this study, we explored the spatial patterns of forest fire regimes in China using spatial point pattern analysis, cold and hot spot analysis and landscape spatial pattern analysis. We further analyzed the spatial nonstationarity of factors influencing the pattern of forest fire regimes in China using the global Poisson regression model (GPR) and geographically weighted Poisson regression model (GWPR). Our results showed that the interquartile range of the regression coefficients in the GWPR model was greater than twice the standard error of the GPR model, indicating spatial non-stationarity in the regression relationship between forest fire regimes and influencing factors. The GWPR model had a better fitting effect (deviance, AIC value, AICc value, percent deviance explained) than the GPR model, suggesting that considering spatial non-stationarity can improve model fitting. Road density and forest coverage were the main factors influencing the frequency of forest fires, while NDVI, road density and forest cover were the main factors influencing the size of burned patches. These influencing factors exhibited significant spatial non-stationarity, indicating that the dominant environmental factors for forest fire regimes in China were regionally specific. Our results could provide a scientific basis for making region-specific forest fire management decisions.


Key words: forest fire regime, geographical weighted Poisson regression model, spatial non-stationarity