欢迎访问《生态学杂志》官方网站,今天是 分享到:

生态学杂志 ›› 2023, Vol. 42 ›› Issue (2): 463-470.doi: 10.13292/j.1000-4890.202302.004

• 综合评述 • 上一篇    下一篇

大气沉降氮在土壤-植物系统中的留存机制

王斌1,3,王汝振1*,李甜1,2,张玉革2,姜勇1


  

  1. 1中国科学院沈阳应用生态研究所, 沈阳 110016; 2沈阳大学环境学院, 沈阳 110044; 3中国科学院大学, 北京 100049)

  • 出版日期:2023-02-10 发布日期:2023-07-10

Retention mechanisms of atmospheric deposited nitrogen in soil-plant systems.

WANG Bin1,3, WANG Ru-zhen1*, LI Tian1,2, ZHANG Yu-ge2, JIANG Yong1   

  1. (1Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, China; 2College of Environment, Shenyang University, Shenyang 110044, China; 3University of Chinese Academy of Sciences, Beijing 100049, China).

  • Online:2023-02-10 Published:2023-07-10

摘要: 大气沉降氮在土壤和植物中的留存特征,是陆地生态系统氮截获和持续供应的关键。采用稳定性氮同位素技术标记15NO3-15NH4+,可以量化两种形态沉降氮的归趋动态。国内外氮同位素示踪试验的主要特点是氮添加量小(多小于250 mg 15N·m-2),运行时间短(少于48个月),15NO3-15NH4+归趋的对比研究少。大气沉降氮中NO3-和NH4+在生态系统中的留存,会因植物吸收偏好、微生物-植物氮竞争状况和生物-非生物固定过程的差异而不同。已有的研究表明,持续周转的微生物生物量氮是外源氮转化和固持的主要场所之一,土壤微生物偏好吸收利用NH4+,而非NO3-;多数植物物种偏好吸收NO3-,且能更快地转移到根表而被固定;团聚体组成对植物-土壤的氮留存量和土壤氮饱和过程具有重要的调节作用。大气活性氮在生态系统各组分分布与稳定的时空格局,不同粒径土壤团聚体对沉降氮的留存机制方面尚需要系统研究。相关研究可为完善生态系统氮循环理论,优化氮循环模型提供科学依据和数据支持。


关键词: 自然生态系统, 土壤团聚体, 氮吸收, 氮添加形态, 氮稳定性同位素

Abstract: The retention of atmospheric N in plant and soil is a key pathway of ecosystem nitrogen (N) sequestration and sustainable supply. Stable isotope tracing techniques with 15NO3- and 15NH4+ can be used to quantify the fate of the two inorganic forms of deposited N. Globally, the main characteristics of isotopic N tracing studies are applying trace amount of 15N (mostly lower than 250 mg 15N·m-2), short experimental duration (mostly shorter than 48 months), and scarcely comparing the fate of NO3- and NH4+. The retention of atmospheric-deposited NO3- and NH4+ in ecosystems may depend on plant N uptake preference, N competition between soil microbes and plants, and differences in abiotic versus biotic fixations. Several studies demonstrate that continuously cycling   microbial biomass N is the main place for the turnover and fixation of exogenous N, that microbes preferentially take up NH4rather than NO3-, that most plant species prefer to absorb NO3- of which being transferred to root surface and assimilated more quickly, and that soil aggregation can substantially modulate N retention in plant-soil systems and soil N saturation process. Future studies should be strengthened in systematically investigating the spatial and temporal patterns of atmospheric-deposited reactive N distributing and stabilizing in various ecosystem components and the retention mechanisms of deposited N in different soil aggregates. These studies would provide scientific evidence and supportive data sets for improving ecosystem N-cycling theory and optimizing N-cycling models.


Key words: natural ecosystem, soil aggregate, nitrogen uptake, nitrogen addition form, nitrogen stable isotope.