[1] 王长耀,牛铮,唐华俊,等.2001.对地观测技术与精细农业[M].北京:科学出版社,55. [2] 王秀珍,王人潮,李云梅,等.2001.不同氮素营养水平的水稻冠层光谱红边参数及其应用研究[J].浙江大学学报(农业和生命科学版),27(3):301~306. [3] 苏理宏,黄裕霞,李小文,等.2002.三维结构真实遥感像元场景的生成[J].中国图像图形学报,7(6):570~575. [4] 陈楚群,施平,毛庆文,等.1996.应用TM数据估算沿岸海水表层叶绿素模型研究[J].环境遥感,11(3):168~176. [5] 郑兰芬,童庆禧,王晋年.1995.高光谱分辨率遥感研究进展[A].见:中国科学院遥感应用研究所编,遥感科学进展[C].北京:科学出版社,42~50. [6] 宫鹏,史培军,浦瑞良,等.1996.对地观测技术与地球系统科学[M].北京:科学出版社,1~208. [7] 赵碧云,贺彬,朱云燕.2001.滇池水体中叶绿素A含量的遥感定量模型[J].云南环境科学,20(3):1~3. [8] 浦瑞良,宫鹏.2000.高光谱遥感及其使用[M].北京:高等教育出版社,191~192. [9] 浦瑞良,宫鹏.1997.森林生物化学与CASI高光谱分辨率遥感数据的相关分析[J].遥感学报,1(2):115~123. [10] 董国权,李正直.1995.绿色植物的激光荧光谱及遥感应用[J].光学仪器,(增刊1):71. [11] Anatoly AG, Mark NET. 1996. Detection of red position and chlorophyll content by reflectance measurements near 700 nm[J]. J. Plant Physiol., 148: 501 ~508. [12] Asner GP. 1998. Biophysical and biochemical sources of variability in canopy reflectance[J]. Remote Sens. Environ., 64:234~253. [13] Bannari A, Morin D, Bonn FA. 1995. Review of vegetation indices [J]. Remote Sens. Reviews, 13: 95~120. [14] Barry D. 1998. A New within-leaf radiative transfer model [J].Remote Sens. Environ., 63:182~193. [15] Blackburn GA. 1998. Spectral indices for estimating photosynthetic pigment concentrations: a test using senescent tree leaves[J]. Int .J. Remote Sens., 19:657~675. [16] Caetano M, Pereira J MC. 1997. Analysis of the integrated hyperspectral response of pine stands [J]. SPIE, 3(222) :26~37. [17] Card DH, Peterson DL, Matson PA. 1988. Prediction of leaf chemistry by use of visible and near infrared reflectance spectroscopy[J].Remote Sens. Environ., 26:123~147. [18] Curran PJ, Kupiec JA. 1995. Imaging spectrometry:a new tool for ecology[A]. In: FM Denson & SE Plummer eds. Advances in Environment Remote sensing[C]. Chichester: Wiley, 71~88. [19] Danson FM. 1995. Developments in the remote sensing of forest canopy structure [A]. In: FM Danson & SE Plummer eds. Advances in Environmental Remote Sensing[C]. Chichester: Wiley,53~69. [20] Dawson TP, Curran PJ. 1993. Factors affecting the remotely sensed response of coniferous forest plantations [J]. Remote Sen. Environt.,43:55~65. [21] Dawson TP. 1997. The potential for understanding the biochemical signal in the spectra of forest canopies using a coupled leaf and canopy model[J]. Physical Measurements and Signatures in Remote Sens., 45: 463 ~470. [22] Dawson TP, Curran PJ, North PRJ, et al. 1999. The propagation of foliar biochemical absorption features in forest canopy reflectance: a theoretical analysis[J]. Remote Sens. Environ., 67:147~159. [23] Demares V, Gastellu-Etchegorry JPA. 2000. Modeling approach for studying forest chlorophyll content [J]. Remote Sens. Environ., 71:226 ~238. [24] Dungan JL, Johnson LF, Billow CR, et al. 1996. High spectral resolution reflectance of Douglas fir grown under different fertilization treatments:experiment design and treatment effects [J].Remote Sens. Environ., 55: 217~228. [25] Fourty T, Baret F, Jacquemoud S, et al. 1996. Leaf optical properties with explicit description of its biochemical composition: direct and inverse problems[J]. Remote Sens. Environ., 56:104~117. [26] Fourty T, Baret F. 1998. On spectral estimates of fresh leaf biochemistry[J]. Int. J. Remote Sens., 19:1283~1297. [27] Gastellu-Etchegorry JP, Bruniquel-Pinel V. 2001. A modeling approsch to assess robustness of spectrometric predictive equations for canopy chemistry [J]. Remote Sens. Environ., 76: 1~15. [28] Gitelson A, Merzlyak MN. 1994. Spectral reflectance changes associated with autumn senescence of Aesculus hippocastanum L., and Acer platanoides L., leaves spectral features and relation to chlorophyll estimation[J]. J. Plant Physiol., 143: 286~292. [29] Gitelson A, Merzlyak MN. 1994. Quantitative estimation of chlorophyll-a using reflectance spectrum: Experiments with autumn chestnut and maple leaves [J]. J. Photochem. Photobiol. (Biology), 22: 247~252. [30] Gitelson A, Kaufman YJ, Merzlyak MN. 1996. Use of a green channel in remote sensing, global vegetation. EOS-MODIS [J].Remote Sens. Environ. 58: 289 ~298. [31] Gitelson A, Merzlyak MN. 1997. Remote sensing of chlorophyll content in higher plant leaves[J]. Int. J. Remote Sens., 18:2691 ~2697. [32] Goetz SJ, Prince SD. 1996. Remote sensing of net primary production in boreal forest stands[J]. Agri. For. Meteorol., 78:149~179. [33] Grant L. 1987. Diffuse, specular characteristics of leaf reflectance [J]. Remote Sens. Environ., 22:309 ~322. [34] Huguenin RL, Jones JL. 1986. Intelligent Information extraction from reflectance spectra: absorption band position [J]. J. Geophysical Res., 91:9585~9598. [35] J acquemoud S, Baret F. 1990. PROSPECT: a model of leaf optical properties spectra[J]. Remote Sens. Environ., 34: 75~91. [36] Jacquemoud S, Ustin SL. 1996. Estimating leaf biochemistry using the PROSPECT leaf optical properties model[J]. Remote Sens. Environ., 56:194 ~202. [37] Jago RA, Cutler ME, Curran PJ. 1999. Estimating caropy chlorophyll concentration from field and airborne spectra[J]. Remote Sens. Environ.,68:206~216. [38] Johnson LF, Billow CR. 1996. Spectrometric estimation of total nitrogen concentration in Douglas-fir foliage[J]. Int. J. Remote Sens., 17:489~500. [39] Johnson LF, Hlavka CA, Peterson DL. 1994. Multivariate analysis of AVIRIS data for canopy biochemical estimation along the Oregon transect [J]. Remote Sens. Environ., 47: 216 ~230. [40] Kokaly RF. 2001. Investigating a physical basis for spectroscopic estimates of leaf nitrogen concentration [J]. Remote Sens. Environ., 75:153 ~163. [41] Kokaly RF, Clark RN. 1999. Spectroscopic determination of leaf biochemistry using band-depth analysis of absorption features and stepwise multiple linear regression [J]. Remote Sens. Environ.,67: 267~287. [42] Kupiec JA, Curran PJ. 1995. Decoupling the effect of the canopy and foliar biochemical concentration in AVIRIS spectra [J]. Int.J. Remote Sens., 16:1731 ~1739. [43] Lichtenhaler HK. 1987. Chlorophylls and carotenoids: pigments of photosynthetic biomembranes[J]. Methods Enzymol, 148:350~382. [44] Lichtenthaler HK, Gitelson A, Lang M. 1996. Non-destructive determination of chlorophyll concentration of leaves of a green and an aurea mutant of tobacco by reflectance measurements [J]. J. Plant Physiol., 148: 483 ~493. [45] Lillesan TM, Kiefer RW. 1994. Remote sensing and Image Interpretation[M]. Third Edition. New York: John Wiley & Sons.,1~750. [46] Lucas NS, Curran PJ. 1999. Forest ecosystem simulation modelling: the role of remote sensing [J]. Prog. Phys. Geog., 23:391~423. [47] Martin ME, Newman SD, Aber JD, et al. 1998. Determining forest species composition using high spectral resolution remote sensing data [J]. Remote Sens. Environ.,65:249~254. [48] Martin ME, Aber JD. 1997. High spectral resolution remote sensing of forest canopy lignin, nitrogen and ecosystem process[J]. Ecol.Appl., 7:431 ~443. [49] Matson P, Johnson LF, Billow C, et al. 1994. Seasonal patterns and remote spectral estimation of canopy chemistry across the Oregon transect[J]. Ecol. Appl., 4: 280~298. [50] Melamed MT. 1963. Optical properties of powder. Part Ⅰ. Optical absorption coefficent and absolute value of the diffuse reflectance [J]. Applied Physics, 34: 560 ~570. [51] Mooney HA, Vitousek PM, Matson PA. 1987. Exchange of materials between terrestrial ecosystems and the atmosphere [J].Science, 238: 926 ~932. [52] Niemann KO. 1995. Remote sensing of forest stand age using airborne spectrometer data[J]. Photogr. Eng. Rem. Sens., 61 (9):119~1127. [53] North PRJ. 1996. Tree dimensional forest light interaction model using a Monte Carlo method [J]. IEEE Trans. Geosci. Remote Sens., 34: 946 ~956. [54] Pablo J, John R. 2000. Chlorophyll fluorescence effects on vegetation apparent reflectance: Leaf-level measurement and model simulation[J]. Remote Sens. Environ., 74: 582 ~595. [55] Pablo J, John R. 2000. Chlorophyll fluorescence effects on vegetation apparent reflectance: Laboratory and airborne osnopy-level measurement with hyperspectral data[J]. Remote Sens. Environ., 74: 596~608. [56] Peterson DL, Aber JD, Matson PA, et al. 1988. Remote sensing of forest canopy leaf biochemical contents [J]. Remote Sens. Environ., 24:85~108. [57] Peterson DL, Hubbard GS. 1991. Scientific issues and potential remote sensing requirements for plant biochemical content [J].J . Imaging Sci. Techn ., 36,446~456. [58] Rencber AC, Pun FC. 1980. Inflation of R in best Subset Regression [J]. Technol Metrics, 22:49~53. [59] Running SW. 1990. Estimating terrestrial primary productivity combining remote sensing and ecosystem simulation [A]. In:Hobbs RJ, Mooney HA eds., Remote sensing of biosphere functioning[ C]. New York: Springer, 65 ~86. [60] Skoog DA, Holler EJ, Nieman TA. 1998. Principle of Instrumental Analysis[M]. 5th Ed. Philadelphia: Saunders College Publishers, 849. [61] Smith GM, Curran PJ. 1995. The estimation of foliar biochemical content of a slash pine canopy from AVIRIS imagery [J].Can. J. Remote Sens ., 21: 234 ~244. [62] Steudler PA, Bowden RD, Melillo JM. 1989. Influence of nitrogen fertilization on methane uptake in temperate forest soils [J].Nature,341:314~316. [63] Terence PD, Paul JC, Stephen EP. 1998. LIBERTY-Modeling the effects of leaf biochemical concentration on reflectance spectra [J]. Remote Sens. Environ.. 65: 50 ~60. [64] Treitz PM, Howarth PJ. 1999. Hyper spectral remote sensing for estimating biophysical parameters of forest ecosystems[J].Prog. Phys. Geog., 23: 359~390. [65] Vane G, Goetz FH. 1988. Terrestrial imaging spectroscopy [J]. Remote Sens. Environ.,24:1~29. [66] Wessman CA. 1994. Remote sensing and the estimation of ecosystem parameters and functions [A]. In:Hill J, Megier eds., Imaging Spectrometry-A tool for Environment Observation[C]. Dordrecht: Kluwer, 39 ~56. [67] Wessman CA. 1988. Remote sensing of canopy chemistry and nitrogen cycling in temperate forest ecosystem [J]. Nature, 335:154~156. [68] Wulder M. 1998. Optical remote sensing techniques for the assessment of forest inventory and biophysical parameters[J].Prog . Phys. Geog., 22:449~476. [69] Yoder BJ, Pettigrew-Crosby RE. 1995. Predicting nitrogen and chlorophyll content and concentration from reflectance spectra(400~2 500 nm) at leaf and canopy scales [J]. Remote Sens.Environ., 53:199~211. |