欢迎访问《生态学杂志》官方网站,今天是 分享到:

生态学杂志 ›› 2025, Vol. 44 ›› Issue (9): 3116-3125.doi: 10.13292/j.1000-4890.202509.009

• 综合评述 • 上一篇    下一篇

森林冠层导度对气候变化的响应机制、模型与应用研究进展

高俊峰1,2,王维枫1,2*,李丽3,苏梦琳1,2
  

  1. 1南京林业大学生态与环境学院, 南京 210037; 2南京林业大学南方现代林业协同创新中心, 南京 210037; 3南京林业大学竹类研究所, 南京 210037)

  • 出版日期:2025-09-10 发布日期:2025-09-10

Research progress on response mechanisms, models and applications of forest canopy conductance to climate change.

GAO Juneng1,2, WANG Weifeng1,2*, LI Li3, SU Menglin1,2   

  1. (1College of Ecology and Environment, Nanjing Forestry University, Nanjing 210037, China; 2Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China; 3Nanjing Forestry University Bamboo Research Institute, Nanjing 210037, China).

  • Online:2025-09-10 Published:2025-09-10

摘要: 冠层导度(canopy conductance,Gc)是表征植物与大气间气体交换过程的关键生态参数,对调节陆地生态系统物质和能量平衡具有重要意义。在全球变化背景下,Gc作为碳-水耦合循环的核心调控因子,对阐明森林生态系统响应气候变化的适应机制有重要科学价值。本研究综述了森林Gc对光辐射、温度、空气湿度、CO2浓度等环境因子的响应特征,并探讨其通过气孔行为调控树木生长和生理过程的机制。同时,本研究评述了现有森林Gc计算方法的适用性,包括Penman-Monteith公式法、尺度扩展法和遥感法。尽管近年来这些计算方法取得显著进展,但在极端气候条件下的适用性及不同林分发展阶段普适性方面仍存在局限。未来研究应聚焦极端气候事件对Gc的动态胁迫机制以及林龄对Gc的影响,通过融合多源遥感数据与过程模型优化参数方案,构建跨尺度Gc模拟体系。本研究可为完善碳-水耦合循环模拟框架提供理论支持,并为应对气候变化的森林管理策略提供科学依据。


关键词: 冠层导度, 碳-水耦合, 过程模型

Abstract: Canopy conductance is a key ecological parameter characterizing gas exchange process between plants and the atmosphere, playing a crucial role in regulating material and energy balance of terrestrial ecosystems. Under the context of global change, canopy conductance, as a core regulatory factor in the carbon-water coupled cycle, holds important scientific value for clarifying the adaptive mechanisms of forest canopy in response to climate change. We reviewed the response characteristics of forest canopy conductance to environmental factors such as photosynthetic radiation, temperature, air humidity, and CO2 concentration, and then explored the mechanisms by which stomatal behaviors regulate plant growth and physiological processes. We further evaluated the applicability of existing forest canopy conductance calculation methods including the Penman-Monteith equation, up-scaling approaches, and remote sensing techniques. Despite the significant progress in these calculation methods in recent years, limitations remain in terms of their applicability under extreme climate conditions and universality across different developmental stages of forests. Future research should focus on the dynamic stress mechanisms of extreme climate events on canopy conductance and the effects of stand age. By integrating multi-source remote sensing data and optimizing the parameter scheme with the process-based models, a cross-scale canopy conductance simulation framework can be constructed. This review provides theoretical support for improving the carbon-water coupled cycle simulation framework and offers scientific evidence for forest management strategies under climate change.


Key words: canopy conductance, carbon and water coupling, process-based modeling