欢迎访问《生态学杂志》官方网站,今天是 分享到:

生态学杂志 ›› 2025, Vol. 44 ›› Issue (3): 1021-1028.doi: 10.13292/j.1000-4890.202503.024

• 技术与方法 • 上一篇    下一篇

随机分布条件下种群空斑对点格局分析结果的影响

李聿泽1,王鑫厅1*,李海兵2,范静宇1,姜超3,刘芳1,李素英1,梁存柱4   

  1. 1内蒙古工业大学资源与环境工程学院/环境污染控制与修复内蒙古自治区高等学校重点实验室, 呼和浩特 010051; 2内蒙古自治区生态环境科学研究院, 呼和浩特 010011; 3中国农业科学院草原研究所, 呼和浩特 010010; 4内蒙古大学生态与环境学院, 呼和浩特 010021)

  • 出版日期:2025-03-10 发布日期:2025-06-10

The effect of population gaps on the outcomes of point pattern analysis under random distribution conditions.

LI Yuze1, WANG Xinting1*, LI Haibing2, FAN Jingyu1, JIANG Chao3, LIU Fang1, LI Suying1, LIANG Cunzhu4   

  1. (1School of Resources and Environmental Engineering, Inner Mongolia University of Technology/Key Laboratory of Environmental Pollution Control and Remediation at Universities of Inner Mongolia Autonomous Region, Hohhot 010051, China; 2Inner Mongolia Research Academy of Ecological and Environmental Sciences, Hohhot 010011, China; 3Institute of Grassland Research, Chinese Academy of Agriculture Sciences, Huhhot 010010, China; 4School of Ecology and Environment, Inner Mongolia University, Hohhot 010021, China).

  • Online:2025-03-10 Published:2025-06-10

摘要: 点格局分析是种群格局研究过程中最重要、最常用的方法。种群空斑是影响点格局分析结果的重要因素,其对点格局分析结果的影响关乎种群格局研究结论的可靠性;因此,探讨空斑如何影响点格局分析结果具有重要意义。以随机分布格局为对象,在5 m×5 m的研究区域内,通过模拟实验设置低、中、高3种密度,选择具有累积效应的K(r)函数和去除累积效应的成对相关函数g(r),在非屏蔽与屏蔽2种情况下,探讨空斑面积的变化如何影响点格局分析结果。结果表明:(1)随着空斑半径的增加,无论K(r)函数还是g(r)函数,在3种密度条件下,空斑达到一定面积时,开始对点格局分析结果产生影响:种群格局由原来的随机分布1种格局类型经过2种格局类型的过渡后转变为3种格局类型共存;(2)空斑对点格局分析结果的影响,K(r)函数和g(r)函数之间存在差异;(3)空斑对点格局分析结果的影响,对于同一分析方法,不同密度条件下,亦存在一定差异;(4)空斑对点格局分析结果的影响,可以通过屏蔽空斑加以规避,且K(r)函数的规避效果比g(r)函数好。


关键词: 空斑, 点格局分析, K(r)函数, g(r)函数, 屏蔽

Abstract: Point pattern analysis is a fundamental and widely used method in population pattern research. Population gaps constitutes a critical factor influencing the outcomes of point pattern analysis, and its effect on the outcomes is closely related to the reliability of conclusions drawn from population pattern studies. Therefore, an examination of how these gaps impact point pattern analysis is of paramount importance. Through a simulation experiment within a 5 m×5 m area, three densities (low, medium and high) were set to investigate the effect of gap area changes on the analysis outcomes of point patterns under both non-shielded and shielded conditions. The K(r) function, incorporating cumulative effects, and the pairwise correlation function g(r), without cumulative effects, were analyzed. The results showed that: (1) As gap radius increased, both K(r) and g(r) functions affected the analysis outcomes of point patterns, leading to a transition from the original random distribution of a single pattern type to the coexistence of three pattern types after the transition from two pattern types; (2) The impact of gap radius on the analysis outcomes of point patterns differed between the K(r) function and g(r) function; (3) The influence of gaps on point pattern analysis outcomes varied with different density conditions for the same analysis method; (4) Shielding gaps can mitigate their impact on point pattern analysis outcomes, with the evasion effect of the K(r) function being more pronounced than that of the g(r) function.


Key words: gap, point pattern analysis, K(r) function, pairwise correlation function g(r), shielding