欢迎访问《生态学杂志》官方网站,今天是 分享到:

生态学杂志 ›› 2025, Vol. 44 ›› Issue (2): 353-364.doi: 10.13292/j.1000-4890.202502.038

• 森林生态学专栏 • 上一篇    下一篇

东北地区森林地上碳储量动态及固碳潜力预测

王耀1,2,梁宇1,3*,刘波1,马天啸1,吴苗苗1,窦佳慧1,4,王绪高1,3   

  1. 1中国科学院沈阳应用生态研究所森林生态与保育重点实验室, 沈阳 110016; 2中国科学院大学, 北京 100049; 3辽宁省陆地生态系统碳中和重点实验室, 沈阳 110016; 4山东师范大学地理与环境学院, 济南 250358)

  • 出版日期:2025-02-10 发布日期:2025-01-24

Dynamic assessment and carbon sequestration potential prediction of forest aboveground carbon stock in Northeast China.

WANG Yao1,2, LIANG Yu1,3*, LIU Bo1, MA Tianxiao1, WU Miaomiao1, DOU Jiahui1,4, WANG Xugao1,3   

  1. (1CAS Key Laboratory of Forest Ecology and Silviculture, Institute of Applied Ecology, Shenyang 110016, China; 2University of Chinese Academy of Sciences, Beijing 100049, China; 3Key Laboratory of Terrestrial Ecosystem Carbon Neutrality, Liaoning Province, Shenyang 110016, China; 4College of Geography and Environment, Shandong Normal University, Jinan 250358, China).

  • Online:2025-02-10 Published:2025-01-24

摘要: 东北地区作为中国最大的森林分布区,其森林碳储量约占全国的40%。在过去的几十年中,该地区实施了大规模的植树造林及森林恢复工作,但其对碳循环的影响尚不明确。因此,准确预测东北地区未来森林的地上碳储量及固碳潜力对制定东北森林未来管理政策具有重要意义。本研究基于森林清查数据,耦合生态系统过程模型和森林景观模型,模拟未来百年东北地区森林的演替过程及其碳储量动态。同时,本研究通过多源数据(遥感数据、森林清查数据、其他模型结果)对模拟结果进行多尺度验证,提高模型模拟精度,在此基础上估算东北地区森林未来固碳潜力,量化其固碳拐点。结果表明:(1)模型模拟的森林地上碳储量空间分布结果与其他文献基于遥感数据得到的地上碳储量空间分布数据基本一致(Kappa系数=0.81)。此外,模型从林龄角度对模拟结果进行验证,各区域森林及主要树种在各林龄段的比例结果与森林清查数据存在相关性(R2>0.6)。(2)在现行气候条件下,东北地区森林地上碳储量将在2070年达到峰值(6.38 Pg C),相比2000年森林地上碳储量及碳密度分别增加4.57 Pg C、67.46 Mg·hm-2。(3)在不考虑气候变化和森林经营管理政策的前提下,东北地区森林固碳速率呈现先增后降的趋势,峰值出现在2020—2025年,为0.108 Pg C·a-1,0值出现在2070—2075年,森林将由碳汇转为碳源。


关键词: 森林清查数据, 森林景观模型, 模型验证

Abstract: Northeast China, with the largest area of forests in China, holds approximately 40% of the national forest carbon stock. Over the past few decades, extensive afforestation and forest restoration efforts have been implemented in this region, yet their impacts on carbon cycling remain unclear. Accurately predicting the future aboveground carbon storage and carbon sequestration potential of the forests in Northeast China is of significance for devising forest management policies. We utilized publicly available forest inventory data to develop a framework which integrated the ecological process model and forest landscape model to simulate the succession process and carbon storage dynamics of Northeast China’s forests over the next 100 years. We employed multisource data (remote sensing data, forest inventory data, and other model outcomes) to validate the simulation results at multiple scales, to enhance the precision of the model simulations. The study aimed to estimate the carbon sequestration potential of forests in Northeast China and quantify the turning point of carbon sequestration. The results showed that: (1) The spatial distribution of forest aboveground carbon storage simulated by the model aligns closely with spatial distribution data derived from remote sensing in literature (Kappa coefficient = 0.81). Furthermore, we validated the model results from a stand age perspective. The proportions of forests in various age classes and the predominant tree species across different age classes correlated with forest inventory data (R2>0.6). (2) Under the current climate conditions, forest aboveground carbon stock in Northeast China would reach its peak at 6.38 Pg C by the year 2060. Compared to the year 2000, there would be a net increase of 4.57 Pg C in aboveground carbon storage and a net increase of 67.46 Mg·hm-2 in aboveground carbon density. (3) Without considering climate change and forest management policies, the carbon sequestration rate in Northeast China’s forests exhibited a trend of initially increasing and then decreasing. The peak occurs between 2020-2025, reaching 0.108 Pg C·a-1. The rate is projected to reach zero between 2070-2075 when forests shift from carbon sink to source.


Key words: forest inventory data, forest landscape model, model validation