欢迎访问《生态学杂志》官方网站,今天是 分享到:

生态学杂志 ›› 2025, Vol. 44 ›› Issue (6): 2021-2028.doi: 10.13292/j.1000-4890.202506.033

• 研究论文 • 上一篇    下一篇

无定形碳酸钙镁矿物相转化及其对共存砷再分配的影响

常贺1,孔宇硕2,赵孝明2,陈佳3,朱筱琳1,林金如2,石中亮1,马旭3*,姚淑华1
  

  1. 1沈阳化工大学, 辽宁省工业排放重金属处理与资源化技术工程研究中心, 沈阳 110142; 2中国科学院沈阳应用生态研究所, 中国科学院污染生态与环境工程重点实验室, 沈阳 110016; 3大连民族大学环境与资源学院, 辽宁大连 116600)

  • 出版日期:2025-06-10 发布日期:2025-06-10

Mineral phase transformation of amorphous magnesium calcium carbonate and its effect on the partitioning of coexisting arsenic.

CHANG He1, KONG Yushuo2, ZHAO Xiaoming2, CHEN Jia3, ZHU Xiaolin1, LIN Jinru2, SHI Zhongliang1, MA Xu3*, YAO Shuhua1   

  1. (1Shenyang University of Chemical Technology, Liaoning Engineering Research Center for Treatment and Recycling of Industrially Discharged Heavy Metals, Shenyang 110142, China; 2Institute of Applied Ecology, Chinese Academy of Sciences, Key Laboratory of Pollution Ecology and Environmental Engineering, Shenyang 110016, China; 3Dalian Minzu University, College of Environment and Resources, Dalian 116600, Liaoning, China).

  • Online:2025-06-10 Published:2025-06-10

摘要: 矿山环境中无定形碳酸钙镁的矿物相转化影响共存砷(As)的环境行为。然而,人们对无定形碳酸钙镁矿物相转化过程及共存As再分配行为尚无清晰认识。本文研究了无定形碳酸钙镁砷共存体系的矿物相转化过程及砷再分配行为,考察了pH(7.5与9.5)、As价态(As(III)与As(V))及浓度(1与10 mg·L-1)的影响。利用X射线衍射(XRD)、拉曼光谱(Raman)、红外光谱(FTIR)及扫描电镜(SEM)表征了固相样品。结果表明,不同pH、As价态及浓度条件下,无定形碳酸钙镁均首先转化为含镁球霰石(CaCO3,六方晶系),随后转化为含镁CaCO3·H2O与方解石(CaCO3,三方晶系),并最终向含镁文石(CaCO3,正交晶系)转化。pH、As价态及其浓度均影响无定形碳酸钙镁的转化速率,无定形碳酸钙镁在pH 7.5条件下的转化速率高于pH 9.5;在相同pH下,无定形碳酸钙镁转化速率随着As浓度的升高而降低;在As(III)溶液中的转化速率相较于As(V)更快。此外,pH 9.5形成的含镁文石与方解石固As能力更强,且对As(V)具有更好的固定能力。本研究为认清矿山环境中砷的迁移转化行为提供了科学依据。


关键词: 无定形碳酸钙镁, 矿物相转化, 迁移, 固砷

Abstract: The mineral phase transformation of amorphous magnesium-calcium carbonate affects the environmental behavior of the coexisting arsenic (As) in mining environments. However, the mineral phase transformation process of amorphous magnesiumcalcium carbonate and the partitioning behavior of the coexisting arsenic remain unclear. In this study, we examined the effects of pH condition (7.5 and 9.5), As valence state (As(III) or As(V)), and concentration (1 and 10 mg·L-1) on the phase changes and arsenic partitioning during arsenic-participated amorphous magnesium-calcium carbonate transformation. X-ray diffraction, Raman spectroscopy, Fourier transforms infrared spectroscopy, and scanning electron microscope techniques were used to characterize the solid samples. The results showed that amorphous magnesium-calcium carbonate firstly was transformed into Mg-bearing vaterite (CaCO3, hexagonal system), then to Mg-bearing CaCO3·H2O and calcite (CaCO3, trigonal system), and finally to aragonite (CaCO3, orthorhombic system) at different pH conditions and As(III) or As(V) concentrations. The conversion rate of amorphous magnesium-calcium carbonate highly depended on pH conditions, As valence states, and its concentrations. The transformation rate of amorphous magnesium-calcium carbonate at pH 7.5 was higher than that at pH 9.5. The transformation rate decreased with increasing As concentration. The Mg-bearing aragonite and calcite formed at pH 9.5 can immobilize more As(As(III) or As(V)) than those formed at pH 7.5 and showed a better fixation ability for As(V). Our results have implications for understanding the mobility and transformation behavior of arsenic in mining-impacted environments.


Key words: amorphous magnesium calcium carbonate, crystallization transformation, mobility, arsenic fixation