欢迎访问《生态学杂志》官方网站,今天是 分享到:

生态学杂志 ›› 2025, Vol. 44 ›› Issue (4): 1161-1169.doi: 10.13292/j.1000-4890.202504.012

• 研究报告 • 上一篇    下一篇

基于多源光谱遥感估算银北地区土壤可溶性盐基氯离子含量

尚天浩1,陈睿华1,贾萍萍2,张俊华3*
  

  1. 1西安煤航遥感信息有限公司, 西安 710199; 2南京信息工程大学地理科学学院, 南京 210044; 3宁夏大学生态环境学院, 银川 750021)

  • 出版日期:2025-04-10 发布日期:2025-04-10

Estimation of soil soluble salt-based Cl- content in northern Ningxia, China  based on multi-source spectral remote sensing.

SHANG Tianhao1, CHEN Ruihua1, JIA Pingping2, ZHANG Junhua3*   

  1. (1Xi’an Meihang Remote Sensing Information Co. Ltd., Xi’an 710199, China; 2School of Geographical Sciences, Nanjing University of Information Science and Technology, Nanjing 210044, China; 3College of Ecology and Environmental Science, Ningxia University, Yinchuan 750021, China).

  • Online:2025-04-10 Published:2025-04-10

摘要: 土壤可溶性盐基阴离子是诊断土壤盐渍化类型和盐渍化程度的重要依据。为确定多光谱遥感估算土壤可溶性阴离子含量的最优模型,本研究以宁夏银北平罗县盐渍化土壤为对象,以Sentinel-2B和Landsat8-OLI多光谱及实测土壤阴离子含量为基础数据源,利用相关性分析(Pearson correlation coefficient,PCC)和灰色关联度(gray relational analysis,GRA)筛选敏感光谱数据,构建基于支持向量机(support vector machine,SVM)的土壤阴离子含量估算模型,并与偏最小二乘回归(partial least squares regression,PLSR)进行对比,确定遥感影像以估算干旱-半干旱区土壤阴离子的可行性。结果表明:(1)银北地区土壤阴离子含量Cl-最高,SO42-次之,且Cl-表现为强变异;(2)以PCC和GRA作为变量筛选方法,SO42-和HCO3-均无敏感变量入选,Cl-同时满足条件且存在多个敏感光谱指标;(3)基于PCC的变量筛选方式所建Cl-模型整体估算效果优于GRA;(4)土壤Cl-定量估算模型中,SVM模型的精度整体高于PLSR模型。单期影像中以Sentinel-2B所选敏感波段+盐分指数所建PCC-SVM模型Cl-估算效果最佳,其验证决定系数(RP2)和相对分析误差(RPD)为0.989和6.616;Sentinel-2B和Landsat8-OLI联合影像中以敏感波段所建PCC-SVM模型Cl-估算效果较佳,其RP2和RPD为0.895和2.066。上述结果表明,基于Sentinel-2B卫星数据在Cl-的定量估算中具有一定可行性,为当地及同类地区土壤盐渍化信息的快速识别提供科学依据。


关键词: 多光谱, 光谱特征, SVM模型, 土壤Cl-含量

Abstract:

Series of water-soluble anions in soils can be used to identify the types and degrees of soil salinization. This study aimed to determine the optimal model for estimating soil soluble anion content by multispectral remote sensing. Based on Sentinel-2B and Landsat8-OLI multispectral data and the contents of anions in saline soil in Pingluo County, northern Ningxia of northwest China, the sensitive spectral data were screened by Pearson correlation coefficient (PCC) and gray relational analysis (GRA). A soil anion content estimation model based on support vector machine (SVM) was constructed. The feasibility of remote sensing images to estimate soil anions in arid and semi-arid regions was determined by comparison with partial least squares regression (PLSR). The results showed that: (1) Cl- was the highest soil anion, followed by SO42-. The Cl- content showed strong variation. (2) With PCC and GRA as variable screening methods, no sensitive variables of SO42- and HCO3- were selected. Cl- satisfied the conditions and there were multiple sensitive spectral indicators. (3) Overall estimation efficacy of Cl- model constructed by PCC based variable screening approach was better than GRA. (4) For the two inversion models of Cl- content, the SVM model showed a higher accuracy than PLSR model. For the single-phase images, the best inversion performance for Cl- estimation was achieved with the PCC-SVM model constructed by the sensitive band and salinity index selected by Sentinel-2B, with the values of coefficient of determination (RP2) and relative percent deviation (RPD) being 0.989 and 6.616. For the Sentinel-2B and Landsat8-OLI combined images, PCC-SVM model constructed with the sensitive bands achieved the best inversion effect, with the values of RP2 and RPD being 0.895 and 2.066. Our results indicated the feasibility of quantitative estimation of Cl- based on Sentinel-2B satellite data, providing a scientific basis for the rapid identification of soil salinization in local and similar areas.


Key words: multispectral data, spectral characteristic, SVM model, soil Cl- content