欢迎访问《生态学杂志》官方网站,今天是 分享到:

生态学杂志 ›› 2025, Vol. 44 ›› Issue (2): 575-589.doi: 10.13292/j.1000-4890.202502.043

• 研究报告 • 上一篇    下一篇

乡村地表温度对富春江流域景观格局演变的多尺度响应

王振国1,杨国福2,聂文彬1,张亚平1,陈昊1,徐涛1,徐斌1*
  

  1. 1浙江农林大学风景园林与建筑学院, 杭州 311300; 2浙大城市学院艺术与考古学院, 杭州 310015)
  • 出版日期:2025-02-10 发布日期:2025-02-10

Multi-scale response of rural land surface temperature to landscape pattern evolution in the Fuchun River Basin.

WANG Zhenguo1, YANG Guofu2, NIE Wenbin1, ZHANG Yaping1, CHEN Hao1, XU Tao1, XU Bin1*   

  1. (1College of Landscape Architecture and Architecture, Zhejiang Agriculture and Forestry University, Hangzhou 311300, China; 2School of Art and Archaeology, Hangzhou City University, Hangzhou 310015, China).

  • Online:2025-02-10 Published:2025-02-10

摘要: 城市化驱动下,乡村地区土地利用/覆被(LULC)发生明显变化,进而导致了地表热环境的改变。然而,乡村地表温度(LST)在不同尺度上与景观格局的关系还缺乏理解。本研究以富春江流域乡村地区为例,利用相关性分析、空间自相关分析和地理加权相关系数分析等方法,探讨了不同分析尺度下(300、600、900、1200、1500、1800、2100 m和乡镇尺度),1990年和2020年夏季不同地类景观格局对LST的影响。结果表明:(1)1990—2020年耕地、林地是主要用地类型,30年间耕地面积大量减少,主要转化为工业用地、城镇建设用地和农村居民点用地。(2)中度升温区及重度升温区主要分布于富春江两岸的城镇建设用地、农村居民点用地和工业用地聚集区。此外,随分析单元尺度增加,单元间LST的差异逐渐模糊。(3)不同地类景观格局指数与LST的相关性强弱程度依次为城镇建设用地>工业用地>耕地>水体>农村居民点用地>林地,且随尺度增大表现出不同的变化趋势。其中,斑块面积百分比(PLAND)指数对LST的影响最强。耕地减少,城镇建设用地和工业用地增加是局部LST上升的主要原因,农村居民点用地增加对LST的影响相对较弱。林地变化不明显,但对地表热环境具有缓解作用。(4)城镇建设用地、工业用地景观格局指数与LST之间存在明显空间自相关和空间溢出效应。研究结果有助于理解乡村地区土地利用/覆被变化对地表温度的影响,并为未来降低城市化对乡村环境负面影响的解决方案提供了理论依据。


关键词: 尺度效应, 地表热环境, 土地利用/覆被变化, 空间溢出效应, 可持续发展

Abstract: Rural areas have experienced significant changes in land use/land cover (LULC) during urbanization, resulting in alterations of the surface thermal environment. However, the relationship between rural land surface temperature (LST) and landscape patterns at different scales of analysis remains poorly elucidated. This study scrutinizes rural regions of the Fuchun River Basin by employing correlation analysis, spatial autocorrelation analysis, and geographically weighted correlation coefficient analysis. The investigation aimed to discern the impacts of land-use landscape patterns on LST during the summers of 1990 and 2020 across multiple scales of analysis (300, 600, 900, 1200, 1500, 1800, 2100 m, and township levels). The results showed that: (1) From 1990 to 2020, cultivated land and forest land were the predominant land use types. There was a substantial reduction in cultivated land area over 30 years, primarily due to the conversion to industrial land, urban construction land, and rural residential land. (2) Zones with moderate and severe temperature increases concentrated in urban construction land, rural residential land, and industrial land clusters along both banks of the Fuchun River. Furthermore, the distinctiveness of LST changes diminished as the scale of analysis units increased. (3) The degree of correlation between changes in landscape pattern indices and LST among various land types follows the order: urban construction land > industrial land > cultivated land > water bodies > rural residential land > forest land, exhibiting different trends with an increase in the scale of analysis. The percent of landscape (PLAND) index exerted the strongest impact on LST. The rise in local LST could be attributed to decreased area of cultivated land and increased area of urban construction land and industrial land. The increase of rural residential land had a relatively mild impact on LST. The change in forest land was not significant, but it alleviated the surface thermal environment. (4) There was a clear spatial autocorrelation and spatial spillover effect between landscape pattern index of urban construction land and industrial land and LST. These findings contribute to understanding the impact of LULC changes on LST in rural areas. Moreover, the findings furnish a theoretical foundation for mitigating the adverse effects of urbanization on rural environments.


Key words: scale effect, surface thermal environment, land use and land cover change, spatial spillover effect, sustainable development