欢迎访问《生态学杂志》官方网站,今天是 分享到:

生态学杂志 ›› 2024, Vol. 43 ›› Issue (12): 3828-3840.doi: 10.13292/j.1000-4890.202412.033

• 技术与方法 • 上一篇    

多目标情景下面向生态需水保障的排污权交易

梁莹1,李静2,李悦1,王太山1,尤立3,张俊龙1*
  

  1. 1青岛大学环境科学与工程学院, 山东青岛 266071; 2青岛市园林和林业综合服务中心, 山东青岛 266061; 3中国科学院生态环境研究中心, 工业废水无害化与资源化国家工程研究中心, 北京 100085)

  • 出版日期:2024-12-10 发布日期:2024-12-10

Effluent trading considering ecological water demand guarantee under multi-objective scenarios.

LIANG Ying1, LI Jing2, LI Yue1, WANG Taishan1, YOU Li3, ZHANG Junlong1*   

  1. (1College of Environmental Science and Engineering, Qingdao University, Qingdao 266071, Shandong, China; 2Qingdao Municipal Gardening and Forestry Comprehensive Service Center, Qingdao 266061, Shandong, China; 3National Engineering Research Center of Industrial Wastewater Detoxication and Resource Recovery, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China).

  • Online:2024-12-10 Published:2024-12-10

摘要: 本研究构建精细的地区特征性机制约束群,面向生态需水保障开展多目标导向排污权交易系统优化,以“模拟-机理-策略”为主线,探讨大沽河流域青岛段河流湿地不同生态配水量、排污权初始分配目标的影响,揭示生态配水与初始分配目标的最优策略。研究发现:(1)主要买方为胶州畜禽业,工业用户为卖方。(2)初始分配目标U(以高效益为目标)下,系统用水总量、污染负荷及效益最高,目标L(以公平性为目标)下最低,但其交易市场活跃。(3)随生态配水量增加,流域用水、交易量及效益减少,高生态配水下开始发生枯水年交易,但系统交易量降低。(4)基于TOPSIS方法(优劣解距离法)开展多判据分析,得到最优策略为生态配水量取天然径流量的25%,初始分配目标情景为公平性目标。


关键词: 排污权交易, 初始分配目标, 双层规划, 生态需水, TOPSIS分析

Abstract: In this study, elaborate regional characteristic mechanism constraints were constructed to optimize multi-objective oriented effluent trading system considering the ecological water demand guarantee. Following the main line of “simulation-mechanism-strategy”, we examined the effects of ecological water allocation and initial allocation objectives of pollutant discharge permits in Qingdao section of Dagu River Basin, aiming to clarify the optimal strategies of ecological water allocation and initial allocation objectives. The results showed that: (1) The main buyer is livestock and poultry industry in Jiaozhou, while the industrial users are sellers. (2) The total water consumption, pollution loading and system benefit are the highest under objective U (objective of high efficiency), and the lowest under objective L (objective of fairness), with active trading market. (3) With increasing ecological water allocation, water consumption, trading amount and system benefit would decrease. Effluent trading occurs in the dry year and high ecological water allocation scenario, but the system trading amount decreases. (4) Based on the TOPSIS analysis (Technique for Order Preference by Similarity to Ideal Solution), the optimal strategy is obtained, with ecological water allocation being 25% of natural runoff, and the initial allocation objective scenario being fair objective.


Key words: effluent trading, initial allocation objective, bi-level programming, ecological water demand, TOPSIS analysis