欢迎访问《生态学杂志》官方网站,今天是 分享到:

生态学杂志 ›› 2024, Vol. 43 ›› Issue (10): 3113-3120.doi: 10.13292/j.1000-4890.202410.002

• 研究论文 • 上一篇    下一篇

淮河流域稻麦轮作农田生态系统通量源区分布特征

张凯迪1,2,姚筠1,2,凌新锋1,2,燕少威1,2,张方敏3,卢燕宇1,2*   

  1. 1安徽省气象科学研究所/大气科学与卫星遥感安徽省重点实验室, 合肥 230031; 2寿县国家气候观象台/中国气象局淮河流域典型农田生态气象野外科学试验基地, 安徽寿县 232200; 3南京信息工程大学气象灾害预报预警与评估协同创新中心/应用气象学院江苏省农业气象重点实验室, 南京 210044)

  • 出版日期:2024-10-10 发布日期:2024-10-12

Distribution characteristics of flux source of rice-wheat rotation agroecosystem in Huaihe River Basin.

ZHNAG Kaidi1,2, YAO Yun1,2, LING Xinfeng1,2, YAN Shaowei1,2, ZHANG Fangmin3, LU Yanyu1,2*   

  1. (1Anhui Institute of Meteorological Sciences, Anhui Province Key Laboratory of Atmospheric Science and Satellite Remote Sensing, Hefei 230031, China; 2Shouxian National Climatology Observatory/Huai River Basin Typical Farm Eco-meteorological Experiment Field of China Meteorological Administration, Shouxian 232200, Anhui, China; 3Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters/Jiangsu Key Laboratory of Agricultural Meteorology, College of Applied Meteorology, Nanjing University of Information Science & Technology, Nanjing 210044, China).

  • Online:2024-10-10 Published:2024-10-12

摘要: 通量足迹模型通常用于解释通量观测数据的来源问题,以估算通量源区的位置和大小及不同的通量源区的相对贡献度。本文基于涡度通量观测数据,分析了不同时间尺度上的CO2通量的变化特征,并利用Kljun足迹模型对安徽省寿县稻麦轮作农田生态系统2020年11月1日—2021年10月30日的观测数据进行通量源区分析,探讨了不同大气条件和作物不同生长阶段的通量源区情况。结果表明:CO2通量具有明显的时间分异特征,年变化呈现“W”型双吸收峰特征,全年CO2通量均值为-0.81 μmol·m-2·s-1;水稻营养生长与生殖阶段的CO2通量日均值(-3.7 μmol·m-2·s-1)最小,碳吸收能力最强,冬小麦营养生长阶段CO2通量日均值(1.03 μmol·m-2·s-1)最大,表现为碳排放;研究区主风向为西南风,其次为东南风,因此通量源区长度最大值也主要分布在西南和东南方向;通量贡献率为80%时,全年通量源区长度最大值为158.17 m;大气稳定状态下的通量源区范围均大于大气不稳定状态,且作物不同生长阶段的通量源区显著不同,冬小麦营养生长阶段的通量源区范围最大,冬小麦营养生长与生殖阶段的源区范围最小。本文对寿县稻麦轮作农田生态系统通量源区的准确模拟,对于未来从单一站点的通量到区域尺度的上升工作起着至关重要的作用,掌握通量源区模型在淮河流域农田下垫面的运行情况,对提高该区温室气体预算的准确性也有着重要实践意义。


关键词: 淮河流域, 稻麦轮作农田生态系统, 涡度协方差, Kljun模型, 通量源区

Abstract: Flux footprint models are often used to explain the sources of flux data from flux tower measurements, which is helpful for estimating the position and size of surface source areas and the relative contribution of passive scalar sources to the measured fluxes. In this study, we analyzed the variations of CO2 flux on different time scales based on the observed data from eddy covariance system. The Kljun footprint model was used to analyze the flux source of the observation data of a rice-wheat rotation cropland ecosystem in Shouxian County, Anhui Province from November 1, 2020 to October 30, 2021. The flux source of different atmospheric conditions and different growth stages of crops were examined. We found that the CO2 flux had obvious temporal variations. The annual variation of CO2 flux featured a W-typed bimodal absorption peak, and the annual average CO2 flux was -0.81 μmol·m-2·s-1. The daily mean CO2 flux (-3.7 μmol·m-2·s-1) in vegetative growth and reproductive stages of rice was the smallest, showing the strongest carbon sink capacity, while the daily mean CO2 flux (1.03 μmol·m-2·s-1) of the wheat vegetative growth period was the largest, serving as a carbon source. The southwest wind prevailed in this region, followed by southeast wind. The maximum length of the flux source area was thus mainly distributed in the southwest and southeast. When the contribution rate of flux was 80%, the maximum length of annual flux source was 158.17 m. The range of flux source area under atmospheric stable state was larger than that under atmospheric unstable state. The flux source area at different growth stages of crops was significantly different. The flux source area of winter wheat vegetative growth stage was the largest, while the source area of winter wheat vegetative growth and reproductive stage was the smallest. The accurate simulation of flux source area of the rice-wheat rotation agroecosystem in Shouxian County plays a vital role for the upscaling exercises of flux data from single site flux measurements to regional scale. Understanding the operation of the flux source area model on cropland underlying surfaces in Huaihe River Basin is also of great practical significance to improve the accuracy of greenhouse gas budget in this area.


Key words: Huaihe River Basin, rice-wheat rotation agroecosystem, eddy covariance, Kljun model, flux source