欢迎访问《生态学杂志》官方网站,今天是 分享到:

生态学杂志 ›› 2021, Vol. 40 ›› Issue (12): 4128-4136.doi: 10.13292/j.1000-4890.202112.017

• 技术与方法 • 上一篇    

基于PCA敏感波段筛选与SVM建模的银川平原土壤有机质高光谱估算

尚天浩1,毛鸿欣1,张俊华2,3,4*,陈睿华1,王芳1,贾科利1   

  1. 1宁夏大学地理科学与规划学院, 宁夏银川 750021;2宁夏大学生态环境学院, 宁夏银川 750021; 3西北退化生态系统恢复与重建教育部重点实验室, 宁夏银川 750021;4西北土地退化与生态恢复国家重点实验室培育基地, 宁夏银川 750021)
  • 出版日期:2021-12-10 发布日期:2022-05-10

Hyperspctral estimation of soil organic matter content in Yinchuan plain, China based on PCA sensitive band screening and SVM modeling.

SHANG Tian-hao1, MAO Hong-xin1, ZHANG Jun-hua2,3,4*, CHEN Rui-hua1, WANG Fang1, JIA Ke-li1   

  1. (1College of Geographical Sciences and Planning, Ningxia University, Yinchuan 750021, China; 2College of Ecology and Environmental Science, Ningxia University, Yinchuan 750021, China; 3Key Laboratory for Restoration and Reconstruction of Degraded Ecosystem in Northwestern China of Ministry of Education, Ningxia University, Yinchuan 750021, China; 4Breeding Base for State Key Laboratory of Land Degradation and Ecological Restoration in Northwestern China, Ningxia University, Yinchuan 750021, China).
  • Online:2021-12-10 Published:2022-05-10

摘要: 为确定银川平原土壤有机质(SOM)含量的最佳估算模型,实现SOM的快速、准确监测,本研究以银川平原5 km×5 km网格法采集的171个表层土壤样品为对象,测定SOM含量及其野外350~2500 nm高光谱反射率。对光谱经重采样和预处理后得到标准正态变量(SNV)、峰值归一化(MAN)、一阶微分(FDR)、对数的倒数(LR)和倒数的对数(RL)5种光谱指标。基于相关系数法确定SOM的敏感光谱波段,进而采用逐步回归(SR)、灰色关联度(GCD)和主成分分析(PCA)对敏感波段进行最优建模变量提取,最后结合岭回归(RR)、偏最小二乘回归(PLSR)、支持向量机(SVM)和反向神经网络(BPNN)建立SOM的估算模型。结果表明:与REF相比,经常规变换后5种光谱指标与SOM间的相关性并未发生显著变化。基于SR、GCD和PCA提取最优建模变量,光谱指标SNV为共有输入变量;与SR和GCD相比,PCA筛选方式所建模型估算精度最优。基于光谱指标RL建立的PCA-SVM模型精度最高,RC2RP2和RPD分别为0.74、0.78和2.08。本研究通过对比分析不同光谱变换、变量筛选方式和建模方法下的模型精度,确定RL-PCA-SVM为最优估算模型,可以为银川平原及同类地区SOM含量的快速监测提供科学依据。

关键词: 高光谱, 有机质, 光谱预处理, 变量优选方式, 模型

Abstract: The rapid monitoring of soil organic matter (SOM) content based on hyperspectral data is of great significance for evaluating soil fertility. To achieve rapid and accurate monitoring of SOM in the Yinchuan Plain, we collected 171 soil samples at 0-20 cm in Yinchuan Plain by 5 km×5 km grid method, and measured the SOM content in the laboratory and the spectral reflectance by ASD FieldSpc4 Spectrum Analyzers in the field. After spectral preprocessing and resampling, we obtained five spectral indices, including standard normal variable (SNV), maximum normalization (MAN), first order differential (FDR), logarithm of reciprocal (LR), and reciprocal of logarithm (RL). We determined the sensitive bands of SOM using the correlation coefficient method, and screened out the optimal modeling variables from the sensitive bands by stepwise regression (SR), gray correlation degree (GCD), and principal component analysis (PCA). We established estimation models of SOM by ridge regression (RR), partial squaresregression (PLSR), support vector machine (SVM), and back propagation neural network (BPNN), respectively. The results showed that, compared with resampling spectral reflectance (REF), the correlation between the five spectral indices and SOM did not change significantly after conventional transformation. The spectral index SNV was the common input variable when the optimal modeling variables were extracted by SR, GCD, and PCA. Compared with SR and GCD, the PCA screening approach was the best with respect to the accuracy of model estimation. In the PCASVM models, the model based on spectral index RL had the highest accuracy, with Rc2, RP2 and RPD of 0.74, 0.78 and 2.08, respectively. This study determined RL-PCA-SVM as the optimal estimation model by comparing and analyzing the model accuracy under different spectral transformation, variable screening methods and modeling approaches. The model could provide reference for the rapid monitoring of SOM content in Yinchuan Plain and similar areas.

Key words: hyperspectral, organic matter, spectral pretreatment, variables selection method, model.