欢迎访问《生态学杂志》官方网站,今天是 分享到:

生态学杂志 ›› 2021, Vol. 40 ›› Issue (3): 615-626.doi: 10.13292/j.1000-4890.202103.007

• 研究报告 • 上一篇    下一篇

CO2浓度升高和不同氮肥水平下源库处理对粳稻茎鞘非结构性碳水化合物积累和转运的影响

杨靖睿1,2,曹培培1,2,杨凯1,2,吕春华1,2,王艺杰1,2,孙文娟1,于凌飞1   

  1. 1中国科学院植物研究所植被与环境变化国家重点实验室, 北京 100093; 2中国科学院大学, 北京 100049; 3南京信息工程大学应用气象学院, 南京 210044)
  • 出版日期:2021-03-10 发布日期:2021-03-12

Effects of source-sink manipulation on the accumulation and translocation of nonstructural carbohydrates in stems and sheaths of Japonica rice under elevated CO2 concentration and different nitrogen fertilization levels.

ANG Jing-rui1,2, CAO Pei-pei1,2, YANG Kai1,2, LYU Chun-hua1,2, WANG Yi-jie1,2, SUN Wen-juan1, YU Ling-fei1, HU Zheng-hua3, HUANG Yao1*   

  1. (1State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China; 2University of Chinese Academy of Sciences, Beijing 100049, China; 3School of Applied Meteorology, Nanjing University of Information Science & Technology, Nanjing 210044, China).
  • Online:2021-03-10 Published:2021-03-12

摘要: 为探究CO2浓度升高和不同氮肥水平下源库处理对粳稻茎鞘非结构性碳水化合物(NSC)积累和转运的影响,利用开顶式气室(OTC),设置2个CO2浓度(\[CO2\]):对照(背景大气,a\[CO2\])和在背景大气\[CO2\]基础上升高200 μmol·mol-1(e\[CO2\])。以常规粳稻“南粳9108”为试验材料,在OTC内采用盆栽方式,设置低N(N1, 10 g N·m-2)、中N(N2, 20 g N·m-2)和高N(N3, 30 g N·m-2)3个施N水平。抽穗期源库改变设剪叶(LC)和疏花(SR)处理,以不处理为对照。测定并计算了抽穗期和成熟期叶片N含量、茎鞘NSC积累量(TMNSC)、NSC表观转运量(ATMNSC)及其对籽粒产量的表观贡献率(ACNSC)。采用方差分析、相关分析和逐步回归方法对上述观测数据进行分析。结果表明,\[CO2\]升高显著降低抽穗期叶片N含量,显著促进中N水平的NSC积累。在不同\[CO2\]和N水平下,SR处理均导致成熟期茎鞘TMNSC显著升高,ATMNSC和ACNSC显著降低;在背景大气和不同N水平下,LC处理均显著降低成熟期TMNSC,显著提高ATMNSC,但\[CO2\]升高下LC处理对成熟期TMNSC和ATMNSC均无显著影响。LC处理对籽粒产量及其构成未产生显著影响。粒叶比越高,成熟期TMNSC和千粒重越低,ATMNSC、ACNSC、籽粒产量和收获指数越高。综合影响ACNSC的因素为粒叶比、抽穗期和成熟期TMNSC;综合影响籽粒产量的因素为粒叶比、成熟期叶片N含量和TMNSC,这些综合影响均可用多元回归模型定量表述。

关键词: 水稻, CO2浓度升高, 氮肥, 剪叶, 疏花, 源库关系, 非结构性碳水化合物

Abstract: We investigated the effects of source-sink manipulation on the accumulation and translocation of non-structural carbohydrates (NSC) in the stems and sheaths of a Japonica rice (Oryza sativaL.) cultivar “Nangeng 9108” under elevated CO2 concentration (\[CO2\]) and different nitrogen (N) fertilization levels. There were two CO2 concentrations-ambient \[CO2\] (a\[CO2\]) and a\[CO2\]+200 μmol·mol-1 (e\[CO2\])-in open-top chambers (OTCs), and three N application rates, low N (N1, 10 g N·m-2), medium N (N2, 20 g N·m-2), and high N (N3, 30 g N·m-2). The source-sink manipulations were carried out by leaf cutting (LC) and spikelet removal (SR). No source-sink manipulations were set as control (CK). Leaf N content and the total mass of NSC stored in stems and sheaths (TMNSC) at heading and maturity were measured. The apparent transferred mass of NSC from stems and sheaths to grains (ATMNSC) and the apparent contribution of transferred NSC to grain yield (ACNSC) were calculated. The results showed that e\[CO2\] significantly decreased leaf N content at heading stage, and significantly promoted NSC accumulation at the N2 level. Under different \[CO2\] and N levels, SR treatment increased TMNSC at maturity but decreased ATMNSC and ACNSC. LC treatment significantly decreased TMNSC and increased ATMNSC at maturity under a\[CO2\] and different N levels. There were no significant effects of LC treatment on TMNSC and ATMNSC at maturity under elevated CO2. The LC treatment did not affect grain yield and its components. We found higher ratio of spikelet number to leaf area (grain/leaf ratio), higher ATMNSC, ACNSC, grain yield and harvest index but lower TMNSC and 1000grain weight at maturity. The factors affecting ACNSC were grain/leaf ratio, and TMNSC at heading and maturity, while those affecting grain yield were grain/leaf ratio, leaf N content and TMNSC at maturity. The relationships between ACNSC and grain yield can be quantified by multiple regression models.

Key words: rice, elevated CO2 concentration, nitrogen fertilizer, leaf cutting, spikelet removal, source-sink relationship, non-structural carbohydrates.