欢迎访问《生态学杂志》官方网站,今天是 分享到:

生态学杂志

• 方法与技术 • 上一篇    下一篇

基于MRT的喀纳斯泰加林火成演替群落数量分类

郭珂1,潘存德1*,李贵华2,余戈壁3,张帆1,刘博1,邹卓颖1,刘晓菊1   

  1. 1新疆农业大学林学与园艺学院/新疆教育厅干旱区林业生态与产业技术重点实验室, 乌鲁木齐 830052;2新疆维吾尔自治区林业厅, 乌鲁木齐 830000;3喀纳斯国家自然保护区, 新疆布尔津 836600)
  • 出版日期:2019-06-10 发布日期:2019-06-10

Quantitative classification of Kanas taiga communities along the pyrogenic succession using multivariate regression trees.

GUO Ke1, PAN Cun-de1*, LI Gui-hua2, YU Ge-bi3, ZHANG Fan1, LIU Bo1, ZOU Zhuo-ying1, LIU Xiao-ju1   

  1. (1College of Forestry and Horticulture, Xinjiang Agricultural University/Key Laboratory of Forest Ecology and Industry Technology in Arid Region, Education Department of Xinjiang, Urumqi 830052, China; 2Forestry Department of Xinjiang Uygur Autonomous Region, Urumqi 830000, China; 3Kanas National Nature Reserve, Burjin 836600, Xinjiang, China).
  • Online:2019-06-10 Published:2019-06-10

摘要: 以喀纳斯国家自然保护区科学实验区未受人为干扰的可识别的火成演替泰加林群落为研究对象,采用典型样地调查法,运用地形因子、火干扰因子、土壤因子和物种重要值为变量的典范对应分析(CCA)方法和多元回归树(MRT)方法,分析物种分布格局的影响因子及群落类型和特征,以期加深对泰加林火成演替群落的科学认识。结果表明:喀纳斯泰加林植被共有维管束植物172种,隶属43科125属,其中乔木7种,灌木19种,草本植物146种。影响喀纳斯泰加林火成演替群落物种分布格局的主要因子是地形因子的海拔、土壤因子的全钾含量、火干扰因子的火烈度和火后时间。MRT方法将喀纳斯泰加林火成演替群落划分为6个群落类型,即:①疣枝桦(Betula pendula)+西伯利亚云杉(Picea obovata)-红果越橘(Vaccinium hirtum)-黑穗苔草(Carex atrata)+老芒麦(Elymus sibiricus)群落;②疣枝桦+西伯利亚云杉-红果越橘+大叶绣线菊(Spiraea chamaedryfolia)-黑穗苔草群落;③西伯利亚落叶松(Larix sibirica)+疣枝桦-红果越橘+密刺蔷薇(Rosa spinosissima)-黑穗苔草+寄奴花(Eremosyne pectinata)群落;④西伯利亚红松(Pinus sibirica)+西伯利亚落叶松-红果越橘+林奈木(Linnaes boealis)-老芒麦+寄奴花群落;⑤西伯利亚落叶松-红果越橘+阿尔泰忍冬(Lonicera caerulea)-细叶野豌豆(Vicia tenuifolia)+老芒麦群落;⑥西伯利亚落叶松+西伯利亚云杉-红果越橘-老芒麦+黑穗苔草群落。喀纳斯泰加林火成演替群落物种分布格局是地形因子、土壤因子和火干扰因子三者共同作用的结果,其中海拔、火烈度和火后时间是影响群落类型形成的关键因子。

关键词: 碳源, 碳汇, 净碳排放强度, 长三角地区, 时空格局

Abstract: To understand the mechanism and process of taiga along the pyrogenic succession in Kanas, Xinjiang, we investigated topography, soil, fire disturbance and species importance value by typical sampling method. The types and characteristics of taiga communities, as well as the factors influencing species distribution pattern, were analyzed using canonical correspondence analysis (CCA) and multivariate regression trees (MRT). The results showed that there are 172 species, 125 genera and 43 families of vascular plant species in Kanas taiga. Based on life form, these species can be divided into 7 tree, 19 shrub and 146 herbaceous species. Elevation, total potassium concentration, fire severity and posfire time were the main factors affecting species distribution in Taiga forest along the pyrogenic succession. Communities can be classified into six categories using MRT in Kanas taiga: (1) Betula pendula+Picea obovate Vaccinium hirtum-Carex atrata+Elymus sibiricus community, (2) B. pendula+P. obovate-V. hirtum+Spiraea chamaedryfolia-C. atrata community, (3)Larix sibirica+B. pendula-V. hirtum+Rosa spinosissima-C. atrata+Eremosyne pectinatacommunity, (4)Pinus sibirica+L. sibirica-V. hirtum+Linnaes borealis-E. sibiricus+E. pectinatacommunity, (5)L. sibirica-V. hirtum+Lonicera caerulea-Vicia tenuifolia+E. sibiricus community, and (6) L. sibirica+P. obovate-V. hirtum-E. sibiricus+C. atratacommunity. In conclusion, variation in species distribution of taiga along the pyrogenic succession was mainly determined by topography, soil and fire disturbance. Within the factors -related to topography, soil and fire disturbance, altitude, fire severity and postfire time were the key factors driving the formation and persistence of communities in Kanas taiga.

Key words: carbon source, carbon sink, net carbon emission intensity, Yangtze River Delta, spatiotemporal pattern.