欢迎访问《生态学杂志》官方网站,今天是 分享到:

生态学杂志 ›› 2024, Vol. 43 ›› Issue (6): 1549-1557.doi: 10.13292/j.1000-4890.202406.019

• 森林生态 • 上一篇    下一篇

调查数据匮乏区域的森林景观模型验证:以LANDIS PRO模型模拟青藏高原森林景观动态为例

张鹏超1,2,梁宇1,3*,吴苗苗1,刘波1,马天啸1   

  1. 1森林生态与保育重点实验室(中国科学院), 沈阳 110016; 2中国科学院大学, 北京 100049; 3辽宁省陆地生态系统碳中和重点实验室, 沈阳 110016)

  • 出版日期:2024-06-10 发布日期:2024-06-12

Validation of forest landscape model in forest survey data-poor regions: An example of simulating forest landscape dynamics on the Qinghai-Tibet Plateau with the LANDIS PRO model.

ZHANG Pengchao1,2, LIANG Yu1,3*, WU Miaomiao1, LIU Bo1, MA Tianxiao1   

  1. (1CAS Key Laboratory of Forest Ecology and Silviculture, Institute of Applied Ecology, Shenyang 110016, China; 2University of Chinese Academy of Sciences, Beijing 100049, China; 3Key Laboratory of Terrestrial Ecosystem Carbon Neutrality, Liaoning Province, Shenyang 110016, China).

  • Online:2024-06-10 Published:2024-06-12

摘要: 森林景观模型(forest landscape model, FLM)已成为模拟森林景观动态的重要工具,模型预测的有效性将决定FLM在森林管理应用中的广度和深度。有限的调查数据是制约模型验证的主要原因,选择合适的方法来弥补数据的空缺并解决数据匮乏地区的模型验证问题可促进FLM得到更广泛的应用。本研究基于多源数据和时空代替法在森林调查数据匮乏的区域建立模型验证框架,并以LANDIS PRO森林景观模型模拟青藏高原未来森林景观动态为例说明该框架的适用性。具体的验证框架为:首先,使用森林调查数据校验模型参数;其次,利用多源数据(森林调查数据、遥感产品和已有研究结果)对模型结果进行短期验证;最后基于时空代替法和已有研究验证模型的长期结果。验证结果表明:初始模拟结果能够准确表征真实的森林属性信息;基于多种指标的LANDIS PRO短期模拟结果在样地和景观尺度上与验证数据差异较小(RMSE<80 t·hm-2、SD<80 t·hm-2R2=0.81);长期林分动态特征与先前研究一致,模型预测的森林组成、结构和演替轨迹与该区原生林生长轨迹一致。这表明本研究基于森林资源数据匮乏条件建立的森林景观模型验证框架能够较好地对森林景观的模拟结果进行验证。


关键词: 模型验证框架, 时空代替法, 多源数据, 森林数据匮乏区

Abstract: The forest landscape model (FLM) has been recognized as a crucial tool for simulating the dynamics of forest landscapes. The efficacy of predictions of the model will determine its width and depth of application in forest management. The limited availability of survey data is a main constraint on model validation. Choosing appropriate methods to compensate for data gaps and addressing the challenge of model validation in data-scarce regions can promote the wider application of FLM. In this study, a framework for model validation was established based on multi-source data and spatiotemporal substitution in regions with limited forest survey data. We used the LANDIS PRO forest landscape model to simulate the future forest landscape dynamics of the Qinghai-Tibet Plateau. The specific validation framework was as follows. First, the model parameters were calibrated using forest survey data. Then, the short-term model results were validated using multiple sources of data (forest survey data, remote sensing products, and existing research results). Finally, both spatiotemporal substitution and previous research results were used to validate the long-term results. The validation results showed that the initial simulation results accurately represented the real forest attributes. The short-term simulation results of LANDIS PRO based on multiple indicators were relatively consistent with the validated data at both plot and landscape scales (RMSE<80 t·hm-2, SD<80 t·hm-2, R2=0.81). The long-term dynamic characteristics of forests were consistent with previous research, with the model predictions of forest composition, structure, and succession being consistent with the growth trajectory of native forest in the region. This suggests that the established validation framework of forest landscape model under the conditions of the lack of forest resource data can effectively validate the simulation results of forest landscapes.


Key words: model validation framework, spatiotemporal substitution, multi-source data, forest survey data-poor region