欢迎访问《生态学杂志》官方网站,今天是 分享到:

生态学杂志 ›› 2022, Vol. 41 ›› Issue (12): 2471-2478.doi: 10.13292/j.1000-4890.202212.002

• 技术与方法 • 上一篇    下一篇

基于增强回归树模型的三江源国家公园表层土壤储水及水源涵养功能的评估

张法伟1,3*,李红琴1,2,罗方林1,3,王春雨1,3,王军邦4,马文婧5,杨永胜1,3,李英年1,3


  

  1. 1中国科学院三江源国家公园研究院, 西宁 810001;2洛阳师范学院生命科学学院, 河南洛阳 471934; 3中国科学院西北高原生物研究所高原生物适应与进化重点实验室, 西宁 810001; 4中国科学院地理科学与资源研究所生态系统网络观测与模拟重点实验室, 北京 100101; 5海北藏族自治州气象局, 青海海北 810200)

  • 出版日期:2022-12-10 发布日期:2022-12-20

Evaluations on topsoil water storage and water conservation capacity of the Sanjiangyuan National Park based on boosted regression trees.

ZHANG Fa-wei1,3*, LI Hong-qin1,2, LUO Fang-lin1,3, WANG Chun-yu1,3, WANG Jun-bang4, MA Wen-jing5, YANG Yong-sheng1,3, LI Ying-nian1,3#br#

#br#
  

  1. (1Institute of Sanjiangyuan National Park, Chinese Academy of Sciences, Xining 810001, China; 2College of Life Sciences, Luoyang Normal University, Luoyang 471934, Henan, China; 3Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining 810001, China; 4Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China; 5Meteorological Bureau of Haibei Tibetan Autonomous Prefecture, Haibei 810200, Qinghai, China).

  • Online:2022-12-10 Published:2022-12-20

摘要: 三江源国家公园表层(0~30 cm)土壤水分性状是区域水源涵养功能及生态承载力评估的重要基础,但地面数据的缺乏限制了相关研究结果的准确性。以青海高原典型区域表层土壤水分的长期监测数据为基础,结合气温、降水、蒸散发、归一化植被指数、海拔、坡度和坡向等因子,构建了增强回归树模型以量化三江源国家公园表层土壤储水及其水源涵养功能。结果表明,三江源国家公园平均表层土壤现实储水量、有效储水量及水源涵养量分别为75.20±1.98、50.52±2.53及73.79±68.45 mm。在未考虑冰川冻土消融的情况下,区域平均最大、现实和最小产流量分别为47.75±65.75、-2.78±64.45和-30.48±65.16 mm。三江源国家公园表层土壤现实储水及水源涵养功能均呈现出从西北到东南逐渐升高的空间趋势,其总量分别为30.48亿t和50.80亿t,约79%集中于高寒草甸。研究结果可为三江源国家公园水资源承载力的评估和功能区划提供数据支撑。


关键词: 土壤储水, 水源涵养, 产流量, 增强回归树模型, 三江源国家公园

Abstract: The topsoil (0-30 cm) water properties of the Sanjiangyuan National Park are an important basis for evaluating regional water conservation and ecological carrying capacity. Results from previous studies are much uncertain due to the lack of field observation data. Based on long-term observations of topsoil water contents in the representative sites across the Qinghai Plateau, combined with the factors such as temperature, precipitation, evapotranspiration, normalized difference vegetation index, elevation, slope, and aspect, the boosted regression trees model was trained to quantify topsoil water storage and water conservation capacity of the Sanjiangyuan National Park. The results showed that the actual topsoil water storage, effective water storage, and water conservation capacity of the Sanjianyuan National Park averaged 75.20±1.98, 50.52±2.53, and 73.79±68.45 mm, respectively. The regional maximum, apparent, and minimum runoff yield averaged 47.75±65.75, -2.78±64.45, and -30.48±65.16 mm, respectively, on the premise of not considering the melting of glaciers and permafrost. The actual topsoil water storage and water conservation in the Sanjianyuan National Park increased from northwest to southeast part. The total stocks of topsoil water storage and water conservation capacity were 30.48×108 and 50.80×108 m3, 79% of which were concentrated in alpine meadows. These findings could provide a data basis for evaluating water resources carrying capacity and functional zoning of the Sanjiangyuan National Park.


Key words: soil water storage, water conservation, runoff yield, boosted regression trees, Sanjiangyuan National Park.